We asked Dr. Michael Heiber, lead of Enthought’s Materials Informatics solutions, about what these technology trends mean for the future of materials and chemical labs and product development.
Michael Heiber: Industry success today is largely dictated by the ability to continuously develop and leverage innovative new materials and chemicals. Historically high-margin specialty products are becoming more commoditized, and the race is on for companies to differentiate themselves in existing markets and establish a leading presence in new emerging markets. Some are looking to traditional IT solutions and AI platforms to gain competitive advantage but are learning that these tools just aren’t effective for their R&D labs.
Science is different. Science data is different. Product development teams are often working with orders of magnitude more tunable variables and orders of magnitude less data that is sparse, non-uniformly distributed, and messy. You can’t just install an off-the-shelf product as a one-and-done solution. The most effective tools are those that are flexible enough to integrate into the existing complex R&D workflows that are driven by the researchers and continuously evolve as needs change. Science is iterative and boundless and so should be your scientific software tools.
For example, Enthought works closely with a lab that develops polymer thin films for electronics applications and engineered a data-driven solution to identify optimal sample fabrication conditions 100% faster with a 50% reduction in material consumption. This directly enables their application engineering team to iterate faster with and deliver a superior product to their customers. We also recently collaborated with a team at a large oil company to develop a solution that has dramatically accelerated catalyst development for carbon capture and re-use, which has allowed them to reach target materials properties far ahead of schedule. This directly ties to their business strategy of growing the specialty chemicals side of their business in new emerging markets. We developed another solution for a specialty plastics provider that resulted in a $90K savings per formulation during recipe scale-up to production and reduced their product time-to-market by months. This directly allows them to compete for more business in high-end engineering plastics markets for aerospace and automotive applications. These examples show the possibilities when teams are empowered with tailored digital solutions and critical skills for tackling their unique challenges.
MH: At Enthought, we help companies answer the question “what could be accomplished if our scientists could spend 100% of their time advancing their discoveries?” The real prize with digital transformation is in enabling scientific discovery that has an exponential positive impact on the business. With a data-centric lab, scientists can accelerate workflows and processes, allowing them to make better, faster decisions in the lab and bring new innovative products to market faster than ever before. Most routine work is systematized and automated, and researchers can shift focus to innovative and informative new data sources (new kinds of experiments and simulations) and get into a routine of continuous value-driven process improvement.
When a materials R&D lab arrives at a point where the scientists can dial-in desired product properties, samples with those properties are produced automatically, and continuous digital innovation is built into the culture, there has been a true transformation. This is best achieved, not by hiring centralized data science teams that liaise with researchers, but by digitally transforming R&D labs and teams from the ground up and creating diverse, multidisciplinary teams across the company. Digital innovation should be decentralized so that the best ideas can be created, nurtured, and realized.
However, the people side of this transformation journey cannot be underestimated when getting started. If you are early in your journey, it might be best to choose a challenge where a team is excited to try something new and innovative over a challenge that has the greatest business priority but the team seems resistant. These early adopter teams with the right aptitude and ‘can-do’ attitude are poised to become internal digital champions and future digital leaders in the company that will be essential to broader transformation down the road.
Contact us to learn more about how Enthought can help your organization.
Michael Heiber holds a Ph.D. in polymer science from The University of Akron and a B.S. in materials science and engineering from the University of Illinois at Urbana-Champaign with expertise in polymers for optoelectronic applications. He leads Enthought's Materials Informatics solutions.
Prior to joining Enthought, Michael worked as a postdoctoral researcher at several institutions, where he developed improved physical models for organic electronic devices using custom open source software tools for physics-based device simulations, automated experimental measurements, and advanced data analysis. At Enthought, he drives diverse client projects from laboratory automation to data-driven recommendation systems to MI training.