
The Journey to Digital-centric Chemicals  
and Materials Laboratories

Digital technologies and the innovation they enable are steadily transforming chemicals and materials 
labs. This white paper proposes five ‘levels’ of lab digital capability, providing managers and scientists  

with a mental model to evaluate where they are now, and how to ‘level up’, ultimately transforming  
lab performance and its impact on the business. 
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As with any significant new technology arrival, there is a 
spectrum of adoption by companies, from early ones to 
laggards, with ‘the chasm’ in between. However, adoption 
of the rapidly advancing digital capabilities can be ill-defined,  
with a very different character from that of introducing 
‘traditional technologies.’ Incremental improvements 
resulting from the introduction of new digital technologies 
can give a false sense of transformative progress as existing 
workflows show some efficiency gains. 

First among the concerns in digital lab transformation are 
the costs and risks of change, most often in equipment and 
processes that have been delivering results for years, if not 
decades. Then there are personnel concerns: transitioning 
the deep expertise of long-serving senior scientists who 

are equally concerned with their futures, ensuring that  
the next generation of scientists have the necessary skills 
to take full advantage of digital advances, and finally, 
where to start. 

Labs want a smooth transition that delivers value early 
and continuously. Many R&D leaders acknowledge that 
transformational change must happen for their business to 
remain leading or, at a minimum, stay competitive. However,  
choosing where and how to start remains a challenge. 

This paper provides a framework and series of critical steps 
for achieving transformative results in a dramatically accel-
erated R&D lab, which will elevate the business it supports 
in ways they could only dream of. 

The Journey to Digital-centric 
Chemicals and Materials Laboratories

This white paper examines how digital technologies and the innovation they enable are 
making their way into chemicals and materials labs. It offers five ‘levels’ of a digital capability 
journey, focused on transformative acceleration of new materials development using the 
latest digital technologies, including data management, machine learning, simulation, and 
automation. These levels provide managers and scientists with a mental model for where 
they are and how to ‘level up,’ ultimately to a point of transforming both lab performance 
and its impact on the business. This paper draws on over a decade of Enthought experience 
working with companies worldwide to support transforming their R&D labs through digital 
technologies, skills, and innovation.
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The five levels are: 

Level 1: The Human-centric Lab  
Level 2: The Data-informed Lab  
Level 3: The Data-driven Lab 
Level 4: The Transforming Lab 
Level 5: The Digital-centric Autonomous Lab 

Each level is now examined in more detail. The areas of 
digital skills and enabling IT infrastructure are topics for  
a future white paper. 

Level 1: The Human-centric Lab 

R&D labs at Level 1 are dominated by people-centric 
processes and the scientists who own them. This is nearly 
every lab that has yet to start utilizing modern digital tech-
nologies to enhance their operations. People in the lab 
take on different roles in order to synthesize, formulate, 

process, and evaluate materials as part of a broader effort 
to design specialty products for various applications. 

The lab also has “deep experts” who are highly experienced  
in their domains and who steer the lab in its pursuit of new 
and improved materials. These experts have amazing intu-
ition about a given design target based on years of building 
mental connections about what works, what doesn’t, and 
which knobs to turn to reach the desired result.

In specialty chemicals, the experts are relied upon to  
figure out how to produce a material that meets multi-
ple requirements from a customer with limited time and 
budget. If one frames the function of the lab as turning 
chemical structures, formulations, and process parameters 
into functional materials, the experts reason about “the  
inverse problem,” taking a hypothetical material with  
desired properties and finding the parameters that the  
lab can use to create it.

MATERIALS 
PROPERTIES

THE CHALLENGE

CHEMICAL STRUCTURES,
FORMULATION RECIPE,

PROCESS VARIABLES

?

Figure 1: The role of R&D researchers is to figure out how to take the function of the lab – that of creating materials from 
chemical structures, formulations, and processes – and invert it to determine the laboratory inputs that will produce a  
material with the desired properties.

Five ‘Digital Levels’ of R&D Labs: There are five levels for a lab to self-evaluate where 
it is on the digital spectrum, with a focus on transformative acceleration of new materials 
development using the latest digital technologies. From there, current initiatives can be 
evaluated and new ones planned to level up in both capability and value delivered. 
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Lacking well-organized knowledge and data bases, these 
experts are heavily relied on to get new projects started 
off on the right foot. However, these experts currently are 
retiring faster than new ones are being trained to take their 
place. Even if you are not facing a retirement crisis, there 
is only so much pattern complexity that can be held in the 
human mind, and human judgment can be highly biased.

Level 2: The Data-informed Lab 

Key data-related advances and significance  
▪ Data is organized and discoverable across the lab 

▸ Historical data is available for use in visualizations 
and analysis for improved decision-making 

▸ Expert efficiency and motivation are increased  
▸ Perception of data value increases, improving  

practices and culture 

Key technology advances and significance 
▪ Data storage and search

▸ All data are saved and usable in decision-making
▸ Less time is spent searching for data
▸ Laboratory data is saved automatically and  

accrues value
▪ Automated data analysis

▸ Routine analyses are standardized and performed 
without human intervention

▸ Fewer diversions due to human variability and biases
▸ Focus shifts to improving analysis from  

performing analysis

Key scientific staff elements and significance   
▪ Experts are much more effective with new data  

access capabilities 
▪ Experts are much more effective in mentoring and  

knowledge transfer 
▪ Researchers rapidly gain new knowledge and skills,  

reducing dependence on experts and becoming  
those themselves 

To move from Level 1 to Level 2, the first step is organizing 
data, new and old, and making it accessible for improved 
decision-making and results. This is mandatory for all 
laboratory transformation efforts. There are two aspects of 
this; one is technical, the other cultural.

All lab processes must put resulting data under centralized 
management. There are multiple ways to approach this, 

and not all of them provide sufficient organization and 
accessibility to aid in decision-making. If the data manage-
ment solution is not built for scientists, then there’s a good 
chance they won’t use it, so there’s no point. Data is a cor-
porate asset that has value far beyond the cost of storing 
and curating it, but only if the data is curated properly. 

One must consider how data will be collected and how to 
minimize mindless data entry and inefficient aggregation 
of results. This can be facilitated by digital tools that collect 
data at the source (instruments), allow for ad hoc inves-
tigation, and automate routine analysis. Once that data 
is ingested by the system, it must be discoverable so that 
domain experts can use it to solve problems. This leads to 
the second aspect: establishing a data culture.

Properly managing data in the lab requires cultural 
change. The perfect data management system will not be 
worth much if lab researchers and managers do not value 
data as a corporate asset. At Level 1, data is used primarily 
to answer some immediate and specific questions, and 
then effectively lost forever, buried in spreadsheets or pre-
sentations, usually on individuals’ hard drives. Even if the 
data files are archived in some way, data not salient to the 
short-term questions at hand are not likely recorded, and 
the surrounding context of the data is usually lost.

To move up in levels, the core mission of the lab must 
change to lead with generating data and knowledge as 
foundational to creating and evaluating materials. True, 
materials are still made and tested in the lab. However, the 
broader R&D decisions about which research direction to 
pursue next must be derived from the data. This data must 
be recognized as the most valuable output of the lab and, 
therefore, treated as such. Learning how to validate ideas 
and make decisions based on data means centralizing his-
torical data and translating the deep domain knowledge 
of the experts into a process. Every lab has a few experts 

Once that data is ingested by the 
system, it must be discoverable 
so that domain experts can use 
it to solve problems. 



The Journey to Digital-centric Chemicals and Materials Laboratories 4

who have developed intuition after seeing and studying 
massive volumes of data over long careers. For junior 
researchers, discoverable data, including all historical data, 
provides the necessary foundation to both function like an 
expert and accelerate becoming one. 

People will value data more when it can be used imme-
diately to improve their work – a first step in establishing 
a data culture. The ability to search for relevant data, in 
particular, is one way to achieve this. Effective data infra-

structure will let researchers make queries such as “what 
materials have we already produced that get us close to 
these properties?” With this capability, R&D teams can 
prevent unnecessary duplication of previous efforts in the 
lab, start projects closer to the target material, and reduce 
their dependence on experts, thereby making the lab more 
efficient and resilient.

The Level 2 lab with centralized data and search capabilities  
is more efficient, but the experimental design approach is 

still very traditional. R&D leaders look at what has been 
done before, and then put together an experimental plan 
that systematically varies the parameters that appear to 
have a significant impact on the target properties. While 
this process can be roughly informed by manual searching 
and inspecting historical data, there is nothing fundamen-
tally different from the experimental design strategy used 
at Level 1. This traditional process can be extremely slow 
and inefficient, particularly when doing multi-objective 
optimization over many tunable inputs.

Level 3: The Data-driven Lab 

Key data related advances and significance  
▪ Decisions are derived directly from data

▸ Adaptive experimental design reduces reliance  
on experts to guide experiments

▸ Design objectives are reached in fewer trials 
▸ More gets done with the same people in the  

same lab

Key technology advances and significance 
▪ Adaptive experimental design system

▸ Adaptive experimental design recommends  
best experiments based on all managed data

▸ Machine-learning-based decision-making is  
systematic and reasoned

▸ System becomes more informed and makes more 
accurate predictions with more data

MATERIALS 
PROPERTIES

CHEMICAL STRUCTURES,
FORMULATION RECIPE,

PROCESS VARIABLES

+?

Figure 2: At Level 2, all data is digitized and centralized, providing search and data visualization capabilities that can  
be used in decision-making. This focus on the criticality of data to the business requires both technology and cultural change, 
and is foundational to future advances.

People will value data more when 
it can be used immediately to 
improve their work – a first step 
in establishing a data culture. 
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Key scientific staff elements and significance   
▪ Experts shift to supervising and tuning algorithms  

for experimental design to optimize time, cost, and 
exploration

▪ Researchers rely less on experts for guidance, freeing 
experts for higher level tasks 

▪ Junior researchers deliver value with less training  
and experience 

A significant advance is present at Level 3: enhancing 
decision-making through Machine Learning, utilizing the 
now-improved and managed data. Most specialty chem-
ical products have numerous degrees of freedom in both 
composition space and processing conditions, and require 
optimization to meet several performance and cost objec-
tives. This leads to very slow product development that 
consumes valuable raw materials, equipment time, power, 
and worker hours. Specialty chemical suppliers that can 
conduct this complex optimization process faster and 
more efficiently can develop superior products.

At Level 3, the digital tool required to excel at complex 
optimization problems is called adaptive experimental  
design. The technique is described at a high level in this 
case study. An adaptive experimental design system gives 
a new superpower to the R&D team. With it, they can 
leverage the historical lab data to know which direction 
is most likely to get them closer to the material that the 
customer desires. In contrast to traditional experimental 

design methods, adaptive experimental design recom-
mends which experiment to perform next based on a 
machine-learned understanding of historical data that 
includes prediction uncertainty. This recommendation is 
updated after the completion of each experiment so that 
the best decision is made each time using all of the  
latest data. 

With adaptive exper-
imental design, R&D 
leaders can control 
the amount of explo-
ration in the devel-
opment process, 
thereby investing 
resources today that 
will improve future 
product optimization 
tasks. Laboratory 
managers also can inject business factors into the system 
so that R&D decisions are informed by things such as cost, 
deadlines, and risk levels. With this information, the system 
can advise what materials parameter values to try, as well 
as when the likelihood of reaching the design target is low 
enough that it’s no longer worth continuing the project. 

It can tell you when to pivot to a new project and even 
which customer requests you should reject before even 
starting. Managers also can use it to help efficiently  

MATERIALS 
PROPERTIES

CHEMICAL STRUCTURES,
FORMULATION RECIPE,

PROCESS VARIABLES

+? AI

Figure 3: At Level 3, an adaptive experimental design system is used to help make the best decisions based on all available 
data, combining what is technically possible with business constraints. This capability initiates a culture shift where R&D 
leaders learn to trust their data and become comfortable with algorithmic decision-making.

An adaptive  
experimental  
design system 
gives a new  
superpower to 
the R&D team. 
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allocate laboratory workers and other expensive lab 
resources because the system can learn from previous 
projects and compare various optimization strategies to  
be applied to new projects.

Importantly, domain expertise is critical to implementing a 
successful adaptive experimental design system. With the 
relatively small data volumes available in most labs, the 
system is only as good as the quality and choice of data on 
which it is trained. Domain knowledge is encoded into the 
system by choosing how to pre-process the data to extract 
meaningful information (feature engineering) and setting 
appropriate constraints on the data-driven models to com-
ply with physical restrictions and known phenomena.

Business input also is needed to select key performance 
indicators and set appropriate rules that help the system 
make informed recommendations that capture various 
business factors. 

At this point, the materials design process is digitalized. 
The lab is much more efficient, owing to an ever-growing 
collection of valuable centralized data and a constantly 
evolving system supporting R&D decision-making. However,  
nothing has been fundamentally transformed about the 
process. It is still a human-centric laboratory, and the R&D 
process flow is largely untouched, which puts a ceiling on 
the business value. 

Level 4: The Transforming Lab

Key data-related advances and significance  
▪ More data and more types of data are being generated 

by the lab
▸ Squeezes the most out of the lab and people  

without a complete redesign
▸ Achieves results faster and better due to more  

information
▸ Focuses changes on improving processes vs.  

running processes 

Key technology advances and significance 
▪ New instrumentation and measurements,  

tailored to feed knowledge
▸ Faster, cheaper, and more informative data for  

a more informed adaptive experimental design  
system and better materials

▪ Digital twin

▸ High-speed, low-fidelity data for materials screening
▸ Explores materials solution space before iterating  

in the lab
▸ Provides hidden descriptors that cannot be  

measured
▪ Experimental automation prototypes

▸ Faster and higher-quality data for the machine- 
learning-assisted decision-making

Key scientific staff elements and significance   
▪ Experts identify new and better measurements, reducing  

reliance on intuition and bringing experimental results 
closer to the experimental design

▪ Experts and researchers identify process improvements 
that provide more and better data to accelerate labora-
tory operations

▪ Researchers execute on experiment designs created by 
the adaptive experimental design system; the experts 
are involved by exception

Level 4 is the stage 
where laboratory 
transformation starts, 
with a vision for a new 
digital-centric autono-
mous lab that leverages 
current and future 
technologies fully.  
This vision is necessary 
to achieve transformational gains. At Level 3, the lab is 
significantly faster and more performant than it was at the 
caterpillar of Level 1. Relatively speaking, however, it is still 
a caterpillar. 

It is time to create the vision of a butterfly.

The adaptive experimental design system has given  
the lab the ability to learn from history, turning data into 
knowledge. With this system making use of the data that 
everyone knows, researchers can start thinking about 
new data sources. This system will eventually run the lab. 
Before it can, it needs more high-quality data and more 
insightful data that is generated faster. 

One place to start is to capture the intuition of the experts.  
What is that intuition? It is special but surprisingly mundane.  
A good expert serves as another measurement device for 
the lab. For example, an expert may know that a certain 
unmeasured smell or color means the temperature got out 

Level 4 is the 
stage where  
laboratory  
transformation 
starts.
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of spec during formulation. Whatever it is, the expert can 
detect it. Capturing this may mean that the lab needs to 
track temperature more closely during a chemical reaction 
or mixing process.

It is time for the experts and the best analytical R&D minds 
to come together to identify the new, better, or faster mea-
surements that will help accelerate and redesign the R&D 
workflow. This also might entail a new proxy measurement 
performed early in the workflow to screen out 90% of the 
bad candidates before the slower, more-costly measure-
ments are performed.

To move toward the ideal digital-centric autonomous lab, 
a lab also must start identifying process bottlenecks that 
can be alleviated using robotic automation. Whether it’s 
using high-throughput sample creation, sample character-
ization, or both, it’s time to start envisioning and building 
modular, automated laboratory equipment that is digital- 
centric in its design. These tools must be able to receive 
commands from and send data back to a central control 
system, and they must be reconfigurable and interoper-
able so that they can be repurposed as the lab workflow 
evolves.

Physics-based simulation is an additional source of infor-
mation available to R&D labs. So far, the adaptive experi-
mental design system has been built around experimental 
data, but it works just as well wrapped around simulation 
data. Various properties and processes in the lab can be 
probed virtually using physics-based simulation models to 
form a digital twin. 

The digital twin can be a powerful tool for scouting out areas  
that may be very expensive to explore experimentally. In 
this paradigm, the digital twin can be thought of as a lower- 
fidelity map of the design space. One can go to the map 
to see what they might find in an area that has yet to be 
thoroughly explored experimentally. Simulations can also 
reveal hidden fundamental materials properties and process 
descriptors that are not easily measurable in the lab. 

MATERIALS 
PROPERTIES

CHEMICAL STRUCTURES,
FORMULATION RECIPE,

PROCESS VARIABLES

+? AI

Figure 4: At Level 4, the ideal autonomous lab is envisioned and explored. Experts develop new descriptors that capture their 
intuition, new measurements are introduced, and portions of the laboratory process may be automated. The digital twin of 
the lab also can be created, augmented by physics-based simulation, and used to provide a wider view of the design space. 
The key cultural challenge at this level is getting comfortable with re-thinking decades-old R&D workflows and being willing 
to prototype new solutions to sample fabrication and characterization tasks.

… a lab also must start  
identifying process bottlenecks 
that can be alleviated using  
robotic automation. 
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A key attribute of the digital twin is that it can run non-
stop at a much lower cost per data point than many 
experiments. Even though the digital twin is imperfect, the 
adaptive experimental design system can use it to help 
make decisions about the real lab. The system can learn 
the correlations between the digital twin data and the 
experimental data, and can determine at any point in time 
which fidelity of simulation or experiment to run. In this 
way, limited computational, lab equipment, and human 
resources all can be allocated efficiently to extract maxi-
mum knowledge given the data gathered so far, the design 
targets, and the project constraints.

A lab may remain and improve continuously at Level 4 for 
a considerable amount of time, perhaps several years. All 
the technological and cultural factors needed for an au-
tonomous lab are identified or in place, with the next step 
being end-to-end automation of real-world lab processes. 
A central control system guided by adaptive experimental 
design may be driving major portions of the lab with little 
human input, where some parts of the process may not 
have been automated due to priority, cost, or trust in the 
system’s capabilities. Automating the entire lab will take 
more work, but what was impossible at lower levels is  
now within reach.

During this period, the vision for the future autonomous 
lab is created and with prototyping carried out, completely 
removing humans from a new set of innovative workflows. 

With some digital skills training, agency in the technological  
innovation, and cultural changes taking place in the lab, 
the experts that once directed experimentation are now 
leading the transformation and how this transformation  
is affecting the customers of the lab. 

Level 5: The Digital-centric Autonomous Lab 

Key data-related advances and significance  
▪ Lab redesigned and reimplemented around  

generating data
▸ Data generation is no longer a human-driven process
▸ Data is cheaper and generated faster than ever before

MATERIALS 
PROPERTIES

CHEMICAL STRUCTURES,
FORMULATION RECIPE,

PROCESS VARIABLES
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Figure 5: The learning, technology, and experimentation of the previous levels have brought the lab within reach of being 
fully automated. At Level 5, labs integrate these disparate capabilities into autonomous systems that can evolve as business 
needs change. These systems confidently produce new materials that meet customer specifications orders of magnitude 
faster than before and enable broader business transformation. 

Automating the entire lab  
will take more work, but what 
was impossible at lower levels  
is now within reach.
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▸ Data is tailored for data-driven decision-making

Key technology advances and significance 
▪ Complete process automation

▸ Culmination of learning, prototyping, and ideation  
at Level 4

Key scientific staff elements and significance   
▪ Experts are guiding other transformations and  

thinking ahead to the next generation of the lab
▪ Researchers become feature explorers in the automated 

lab and still guide non-automated work to gather rarely 
needed but uniquely valuable information

▪ Technicians shift to testing, maintaining, repairing, 
and upgrading lab equipment

Level 5 completes the transformation started at Level 4 
into a digital-centric autonomous lab. Lab automation 
requires new or reconfigured instrumentation that is fit for 
how the digital-centric lab needs to operate. This new lab 
equipment may be purpose-built and relatively inexpen-
sive (see The 1000x blog post) or an assemblage of off-the-
shelf equipment from traditional vendors. In either case, it 
will be foundational to the digital-centric modern lab. 

Use of the adaptive experimental design system to 
explore the design space, both experimentally and with 
digital twins, has informed on data necessary to produce 
high-value products for targeted markets. By tweaking the 
system and models, trust and confidence are gained in its 
capabilities. 

One likely outcome is discovering that not all of the earlier 
measurements are necessary to arrive at good results, at 
least not most of the time. These earlier measurements will 
still have an important role, but often only after 95+% of 
the unsuccessful materials and chemical candidates have 
been eliminated through the automated processes. These 
rarely used techniques may well not be candidates for 
automation. However, the system can still identify special 
circumstances and recommend humans to perform these 
more exotic measurements.

It is important to examine how the hours gained through 
efficiency will be spent by the experts, junior researchers, 
and technicians. The lab has been transformed dramati-
cally and now automatically generates the vast amount of 
data required to serve both its historical business function 
and create new possibilities. The automated processes 

and enlightened people are ready to deliver new areas of 
innovation for the business. 

At Level 5, continuous process improvement must become 
a core cultural element to make the autonomous lab and 
the business as a whole robust and resilient. On the data 
side, data-driven models are highly dependent on feature 
selection and feature engineering tasks. As the overall pro-
cess accelerates, there always will be bottlenecks where 
the adaptive experimental design system simply struggles 
to predict an important property in an economical way. 

Lab scientists must transition to feature explorers and 
creators, where deep domain expertise is leveraged to con-
tinually create new measurements and data analysis meth-
ods that increase overall predictive power. There also is a 
need for skilled engineers to tackle process improvement  

tasks – for example, increasing measurement accuracy/ 
reliability and decreasing the time and cost of existing 
measurements and simulations, making data generation 
both more efficient and improved for the targeted experi-
ment. For lab technicians, equipment calibration, mainte-
nance, repair, and testing will all still need to be performed 
regularly. 

There also will be opportunities for experts to provide lead-
ership to transform other parts of the company, including 
beyond the R&D lab. They may gain numerous non-tech-
nical skills through this lab transformation, unveiling new 
career opportunities. 

The role of R&D management also will undergo significant 
changes. The lab will now be delivering not-seen-before 
results to the larger organization. Management will need to 
collaboratively evaluate new business potential – for  

Use of the adaptive experimental  
design system to explore the  
design space has informed 
on data necessary to produce 
high-value products for  
targeted markets.



The Journey to Digital-centric Chemicals and Materials Laboratories 10

example, the new ability to meet a client’s custom chemical  
request in weeks or days vs. months may open up new 
market opportunities and require new ways of interacting 
with customers. 

Final Thoughts 

New digital technologies are frequently introduced into 
labs with associated incremental performance improve-
ments and value. These technologies are often selected 
based on a clear path to value using existing workflows, 
such that organization and cultural changes are minimal. 
However, without changing workflows or culture, digi-
talized processes remain limited by their current forms. 

To have a transformative impact, labs must reinvent work-
flows and adopt a strong data culture. Researchers must 
acquire new skills and be empowered to bring digital inno-
vation into the lab. Digital technologies must be selected 
that can rapidly evolve in step with the lab. A lab R&D system 
that is too rigid, inefficient, or adopted as a quick fix, must 
be avoided, as it will be incapable of broader transformation 
and unable to adapt as business needs change. 

When the lab arrives at a point where scientists can dial-in 
desired material or chemical properties, and samples with 
those properties are produced quickly and automatically, 
there has been a true transformation. It is now possible to 

develop highly customized products for each customer, 
bring speciality services into new markets, and stave off 
commoditization. From there, the business must decide 
how to leverage this new capability. The challenge flips 
from a technical one of creating samples, to a business 
one of scaling production capacity, creating new customer- 
focused digital sales tools, expanding into new markets, 
and generating increased revenue - a good problem to have. 

Key to advancing to a Digital-centric Autonomous Lab is 
that technological and cultural changes progress concur-
rently. The technological initiatives generate value, while 
the cultural and organizational ones accelerate it, increas-
ing its potential beyond incremental steps, and ensuring 
a foundation for future progress. Once a given level is 
mastered, the lab is positioned to move to the next. At  
the final level, entirely new possibilities can be explored 
and a new future envisioned in line with broader digital 
business transformation goals. 

Thinking more broadly, it may become possible to vertically 
expand the business beyond being a specialty materials 
or chemicals supplier, to one of end-use products that are 
enabled by self-generated, innovative materials. There may 
also be new value-added digital products and services to  
offer along with the original product, now enabled by the  
autonomous lab. We’ll save that as an area for future 
exploration.
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