
www.enthought.com

1 Classification:
Predict Categorical Data

Logistic Regression O(ND2)
When to use it: When you need to under-
stand the contributions of features using
a method that’s fast to train and easy
to interpret.

How it works: Fits an s-shaped function
(logistic function), which is continuous but has
a steep transition between the two classes,
and assigns class based on sign.

Tips: Inputs must be scaled and uncorrelated.

Code: linear_model.LogisticRegression(C, solver)

• penalty='l1' to use estimator for feature selection
• solver='liblinear' for small datasets or L1 penalty
• 'lbfgs', 'sag' or 'newton-cg' for multi-class problems

and large datasets
• 'sag' for very large datasets

Decision Tree O(NDlog(N))
When to use it: When you need to understand prediction decisions,
when data has both continuous and categorical features, and when
no scaling is needed.

How it works: Chain binary decisions on increasingly smaller subsets
of data. Deeper trees have more complex decision rules and a better fit.

Yes Noknown number?

is grandma?

ignorepick up

ignore

Tips: Very often overfits. Consider doing dimensionality reduction
beforehand. N must double with each extra level.

Code: tree.DecisionTreeClassifier(max_depth). Start with
max_depth=3, then increase. Use tree.export_graphviz to
visualize tree.

Ensemble Methods
When to use them: When no single estimator gives satisfying results.

How they work: Combines predictions of multiple weak, biased
estimators to create a better one. There are two types; averaging
methods —build many estimators—and average predictions.
In boosting methods, each new estimator tries to improve the
previous one.

Tips: Hard to generate the perfect mix of estimators.

Code: All in ensemble module.

Averaging estimators:

• RandomForestClassifier(max_features)
• ExtraTreesClassifier(max_features)

Start with these, but always cross-validate:

• max_features=sqrt(n_features)
• max_depth=None
• min_samples_split=1

Boosting estimator:

• AdaBoostClassifier()
• GradientBoostingClassifier()

All:

• Parallelize with n_jobs=-1
• Increasing n_estimators is better, but slower

Support Vector Classifier O(ND2) to O(ND3)
When to use it: When you have a large number
of features or slightly more features than samples.

How it works: Maximize distance between classes
in high-dimensional space, i.e., “maximum margin
classifier.”

Tips: Scale your data.

Code: svm.SVC(kernel, C=1). Make C smaller
if lots of noisy samples. If accuracy is important set
kernel='rbf'. If fast training is important, use svm.LinearSVC().

Neighbor Classifiers
O(DlogN) to O(DN)
When to use them: When you have large
datasets or a very irregular decision boundary.

How it works: Predict class by majority vote
from nearby data.

Tips: Efficiency comes at the cost of also having
high variance.

Code: neighbors.KNeighborsClassifier(n_neighbors).

• Use RadiusNeighborsClassifier() for unbalanced data and
a D not too large.

• Try weights='uniform' and 'distance'.

\
h Z P

h Z R

Predict the class, or label (t), of a sample based on its features (x). Examples: Recognize hand-written digits, or mark email
as spam. In scikit-learn, labels are represented as integers and get expanded internally into matrices of binary choices
between unique integer labels.
Use class_weight='balanced' in most models to adjust for unbalanced datasets (more training data from one class
than others). Training data has N samples and D features.

Take your machine learning skills to the next level!
Register at enthought.com/python-for-data-science-training

Stochastic Gradient Descent (SGD) Classifier
When to use it: When you have a very large N and D.

How it works: “Online” method, learns the weights
in batches.

Tips: Data must be scaled.

Code: linear_model.SGDClassifier(loss, alpha, n_iter) and
partial_fit() method. Use n_iter=np.ceil(10**6/n_samples).
loss='hinge' gives SVC, 'log' gives logistic regression.

Performance Metrics in sklearn.metrics
They take targets, t, and predicted classes, y,
as arguments. There's more than one way to
be wrong. A fire alarm that always goes off is
annoying, one that never goes off is costly.

confusion_matrix: Explore how model confuses classes. Visualize
with seaborn.heatmap.

precision_score: Fraction of correctly predicted fire of all cases
where fire is predicted.

P predicted as P. TP / (TP + FP)

recall_score: Fraction of predicted fire when there's actually fire.
TP / (TP + FN)

accuracy_score (default for model.score): Fraction correctly
predicted. Meaningless if samples are unbalanced. (TP + TN) / Total

Classification: Predict Categorical Data

©2020 Enthought, Inc., licensed under the Creative Commons Attribution – Non-Commercial, No Derivatives 4.0
International License. To view a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0/

Take your machine learning skills to the next level!
Register at enthought.com/python-for-data-science-training

www.enthought.com

 CI C2 C3

 C
3

C2
 C

1

www.enthought.com

2 Clustering:
Unsupervised Learning

Some models expect
geometries that are “flat,”
or roughly spherical.
Clusters with complicated
shapes like rings or lines
are not flat and will not
work in those models.

K-Means O(kN)
When to use it: When you need something that scales well and
has a small number of flat clusters. For large sample sizes, substitute
MiniBatchKMeans.

How it works: Assigns samples to nearest of k cluster centers, then
moves the centers to minimize the average distance between centers
and samples.

Tips: The K-Means algorithm used by scikit-learn is sensitive to the initial
location of the centers. Performs poorly on complex, non-flat shapes.

Code: cluster.KMeans(n_clusters). n_jobs=-1 to parallelize.

Mean Shift O(NlogN)
When to use it: When you have non-flat geometries, an unknown
number of clusters, and need to guarantee convergence.

How it works: Finds local maxima given a window size.

Tips: Accuracy strongly tied to selecting correct window.

Code: cluster.MeanShift(bandwith). Set bandwidth manually
to small value for large dataset. Estimating it is O(N2) and can be
the bottleneck.

Affinity Propagation O(N2)
When to use it: When you have an unknown number of clusters
and need to specify own similarity metric (affinity argument).

How it works: Finds data points which maximize similarity within
cluster while minimizing similarity with data outside of cluster.

Tips: O(N2) memory use. Accuracy tied to damping.

Code: cluster.AffinityPropagation(preference, damping)

• preference: Negative. Controls the number of clusters. Explore
on log scale.

• damping: 0.5 to 1.

DBSCAN O(N2)
When to use it: When you have very non-flat
geometries or very uneven clusters.

How it works: Clusters are contiguous areas
with high data density. Bounds of clusters are
found using graph connectivity.

Tips: O(N2) memory use. Not deterministic at
cluster boundaries.

Code: cluster.DBSCAN(min_samples, eps, metric)

Higher min_samples or lower eps requires higher density to
form a cluster.

Agglomerative Clustering O(N2logN)
When to use it: When you need a flexible definition of distance
(e.g. Levenshtein).

How it works: Defines all observations as unique clusters, then merges
the closest ones iteratively.

Tips: Worst time complexity.

Code: cluster.AgglomerativeClustering(linkage, affinity,
connectivity). Set linkage criteria for merging:

• 'ward': minimize sum of square differences. Minimizes variance
 Gives most regular cluster size.

• 'complete': minimize max distance between sample pairs.
• 'average': minimize average distance between all sample pairs.

Yields uneven cluster sizes.

affinity: defines type of distances. 'l1' for sparse features, e.g., text;
'cosine' is invariant to scaling.

connectivity: provides extra constraints about which nodes can be
merged, e.g., neighbors.kneighbors_graph.

Predict the underlying structure in features, without the use of targets or labels. Split samples into groups called
“clusters.” With no targets, models are trained by minimizing some definition of “distance” within a cluster. Data has
N samples, D features, and the model discovers k clusters. Models can be used for prediction or for transformation,
by reducing D features into one with k unique values.

Take your machine learning skills to the next level!
Register at enthought.com/python-for-data-science-training

Clustering: Unsupervised Learning

BIRCH O(kN)
When to use it: When you have a large number of observations and
small number of features.

How it works: Builds a balanced tree of groups of data, then clusters
those groups instead of the raw data.

Tips: Performs poorly with large number of features.

Code: cluster.Birch(threshold, branching_factor,
n_clusters)

Performance Metrics in sklearn.metrics
The metrics do not take into account the exact class values, only their
separation. Score is based on ground truth (targets), if available, or to a
measure of similarity within class, and difference across classes.

Needs ground truth:

• adjusted_rand_score: -1 to 1 (best). 0 is random classes. Measures
similarity. Related to accuracy (% correct).

• adjusted_mutual_info_score: 0 to 1 (best). 0 is random classes.
10x slower than adjusted_rand_score. Measures agreement.

• homogeneity_completeness_v_measure: 0 to 1 (best). homogene-
ity: each cluster only contains members of one class; completeness:
all members of a class are in the same cluster; and, v_measure_
score: the harmonic mean of both. Not normalized for random
labeling.

Doesn't need ground truth:

• silhouette_score: -1 to 1 (best). 0 means overlapping clusters.
Based on distance to samples in same cluster and distance to next
nearest cluster.

©2020 Enthought, Inc., licensed under the Creative Commons Attribution – Non-Commercial, No Derivatives 4.0
International License. To view a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0/

Take your machine learning skills to the next level!
Register at enthought.com/python-for-data-science-training

www.enthought.com

www.enthought.com

3 Regression:
Predict Continuous Data

Linear Model O(ND2)
Solves problems of the form:

with predicted value y, features, x, and fitted weights w.

Solved by minimizing “least square error”, ED:

On fitted models, access w as model.coef_ and
w0 as model.intercept_.

Tips: Features must be uncorrelated, use
decomposition.PCA().

Code: linear_model.LinearRegression() if less than
100,000 samples, or see SGD.

Ridge O(ND2)
When to use it: When you have less than 100,000 samples or
noisy outputs.

How it works: Linear model that limits the size of the weights.
Prevents overfitting by increasing bias. Minimizes E instead of ED,
where the second term is called the “L2 norm”:

Code: linear_model.Ridge(alpha)

alpha: Regularization strength, alpha > 0, corresponds to 1/C in other
models. Increase if noisy samples.

Lasso O(ND2)
When to use it: When you have less than 100,000 samples, and only
some features should be important.

How it works: Linear model that forces small weights to be zero.
Minimizes E instead of ED, where the second term is called the “L1 norm”:

Tip: Use with feature_selection.SelectFromModel as a
transformation stage to select features with non-zero weights.

Code: linear_model.Lasso(alpha)

alpha: Regularization strength, alpha > 0, corresponds to 1/C in other
models. Increase if noisy samples.

Ridge vs. Lasso — Shape of Ew
With Ridge and Lasso, the error to minimize E has an extra
component Ew:

Lasso produces sparse models because small weights are forced
to zero.

Nonlinear Transformations
When to use them: When a “straight line” is not sufficient, like
predicting temperature has a function of time of day.

How it works: “Reword” a nonlinear model in linear terms using
nonlinear basis functions, Φj(x), so we can use linear model machinery
to solve nonlinear problems. The linear model becomes:

Polynomial Expansion of Order P: A 2nd order polynomial
two-feature model:

Becomes a model with these six basis functions:

Tips: The same feature affects many different coefficients, so an outlier
can have a big global effect. Number of basis functions grows very
quickly, O((P+1)(D+1)).

Code: poly = preprocessing.PolynomialFeatures(degree)

x_poly = poly.fit_transform(x)

Radial Basis Functions (RBF): Local, Gaussian-shaped functions,
defined by centers and width. Turns one feature into P features.

Code: metrics.pairwise.rbf_kernel(x, centers, gamma)

Predict how a dependent variable (output, t) changes when any of the independent variables (inputs, or features, x)
change. For example, how house prices change as a function of neighborhood and size, or how time spent on a web
page varies as a function of the number of ads and content type. Training data has N samples and D features.

Take your machine learning skills to the next level!
Register at enthought.com/python-for-data-science-training

Regression: Predict Continuous Data

Support Vector Regressor ~O(N2D)
When to use it: When you have many important features,
more features than samples, or a nonlinear problem.

How it works: Find a function such that training
points fit within a “tube” of acceptable error, with
some tolerance towards points that are outside
the tube.

Tips: Must scale inputs, see StandardScalar and RobustScalar.

Code: Start with svm.LinearSVR(epsilon, C=1). Make C smaller if
lots of noisy observations (C = 1/α, small C means more regularization).
If LinearSVR doesn’t work, use svm.SVR(kernel='rbf', gamma).

Stochastic Gradient Descent (SGD) Regressor
When to use it: When the fit is too slow with other estimators.

How it works: “Online” method, learns the weights
in batches, with a subset of the data each time. Pair
with manual basis function expansion to train
nonlinear models on really large datasets.

Code: linear_model.SGDRegressor()
and partial_fit() method.

Performance Metrics in sklearn.metrics
mean_squared_error: Smaller is better. Puts large weight on outliers.

r2_score: Coefficient of determination. Best score is 1.0. Proportion of
explained variance. Default for model.score(x, t).

mean_absolute_error: Smaller is better. Uses same scale as the data.

median_absolute_error: Robust to outliers.

©2020 Enthought, Inc., licensed under the Creative Commons Attribution – Non-Commercial, No Derivatives 4.0
International License. To view a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0/

Take your machine learning skills to the next level!
Register at enthought.com/python-for-data-science-training

www.enthought.com

