
Functions to read data are all named pd.read_* where
* is the file type. Series and DataFrames can be saved to
disk using their to_* method.

Usage Patterns
Use pd.read_clipboard() for one-off data extractions.
Use the other pd.read_* methods in scripts for repeatable
analyses.

Reading Text Files into a DataFrame
Colors highlight how different arguments map from the data file
to a DataFrame.

Parsing Tables from the Web

1 Reading and Writing
Data with Pandas

©2022 Enthought, Inc., licensed under the Creative Commons Attribution – Non-Commercial, No Derivatives 4.0
International License. To view a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0/

Take your Pandas skills to the next level! Register at enthought.com/pandas-mastery-workshop

Other arguments:
•	 names: Set or override column names
•	 parse_dates: Accepts multiple argument types
•	 converters: Manually process each element in a column
•	 comment: Character indicating commented line
•	 chunksize: Read only a certain number of rows each time

Possible values of parse_dates:
[0, 2]: Parse columns 0 and 2 as separate dates
[[0, 2]]: Group columns 0 and 2 and parse as single date
{'Date': [0, 2]}: Group columns 0 and 2, parse as single date
in a column named Date
Dates are parsed after the converters have been applied.

Writing Data Structures to Disk
Write data structures to disk:
>>> s_df.to_csv(filename)
>>> s_df.to_excel(filename)
Write multiple DataFrames to single Excel file:
>>> writer = pd.ExcelWriter(filename)
>>> df1.to_excel(writer, sheet_name='First')
>>> df2.to_excel(writer, sheet_name='Second')
>>> writer.save()

Writing Data Structures from and to a Database
Read, using SQLAlchemy. Supports multiple databases:
>>> from sqlalchemy import create_engine
>>> engine = create_engine(database_url)
>>> conn = engine.connect()
>>> df = pd.read_sql(query_str_or_table_name, conn)
Write:
>>> df.to_sql(table_name, conn)

www.enthought.com

2 Pandas Data Structures:
Series and DataFrames

©2022 Enthought, Inc., licensed under the Creative Commons Attribution – Non-Commercial, No Derivatives 4.0
International License. To view a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0/

Within Pandas, there are two primary data structures: Series (s)
and DataFrames (df).
s	 A Series, which maps an index to values. It can be

thought of as an ordered dictionary or a Numpy array
with row labels and a name.

df	 A DataFrame, which maps index and column labels to
values. It is like a dictionary of Series (columns) sharing
the same index, or like a 2D Numpy array with row and
column labels.

s_df	 Applies to both Series and DataFrames.
Manipulations of Pandas objects usually return copies.

Creating Series and DataFrames
 Values

n1 'Cary' 0

n2 'Lynn' 1

n3 'Sam 2
Index

Series
 >>> pd.Series(values, index=index, name=name)
 >>> pd.Series({'idx1' : val1,'idx2' : val2})

 Where values, index, and name are sequences or arrays.

DataFrame		
Age Gender Columns

'Cary' 32 M

'Lynn' 18 F

'Sam 26 M

Index

>>> pd.DataFrame(values,

 index=index, columns=col_names)

>>> pd.DataFrame({'col1' :

 series1_or _seq,

 'col2': series2_or _seq})

Where values is a sequence of sequences or a 2D array.

Manipulating Series and DataFrames
Manipulating Columns
df.rename(columns={old_name:new_name})	 Renames column
df.drop(name_or_names, axis='columns')	 Drops column name

Manipulating Index
s_df.reindex(new_index)	 Conform to new index
s_df.drop(labels_to_drop)	 Drops index labels
s_df.rename
 (index={old_label: new_label})	 Renames index labels
s_df.sort_index()	 Sorts index labels
df.set_index(column_name_or_names)	
s_df.reset_index()	 Inserts index into columns, resets
 index to default integer index

Manipulating Values
All row values and the index will follow:
df.sort_values(col_name, ascending=True)
df.sort_values(['X','Y'], ascending=[False, True])

Important Attributes and Methods
	 s_df.index	 Array-like row labels
	 df.columns	 Array-like column labels
	 s_df.values	 Numpy array, data
	 s_df.shape	 (n_rows, n_cols)
	 s.dtype, df.dtypes	 Type of Series or of each column

	 len(s_df)	 Number of rows	
	s_df.head() and s_df.tail()	 First/last rows
	 s.unique()	 Series of unique values
	 s_df.describ	 Summary stats
	 df.info()	 Memory usage

Indexing and Slicing
Use these attributes on Series and DataFrames for indexing,
slicing, and assignments:
	 s_df.loc[] 	 Refers only to the index labels
	 s_df.iloc[] 	 Refers only to the integer location,
		 similar to lists or Numpy arrays
	 s_df.xs(key, level=L) 	 Select rows with label key in level L
		 of an object with MultiIndex.

Masking and Boolean Indexing
Create masks with comparisons:
mask = df['X'] < 0

Or isin, for membership mask:
mask = df['X'].isin(list_of_valid_values)

Use masks for indexing:
df.loc[mask] = 0

Combine multiple masks with bitwise operators — and (&), or (|),
or (^), not (~) — and group them with parentheses:
mask = (df['X'] < 0) & (df['Y'] == 0)

Common Indexing and Slicing Patterns
rows and cols can be values, lists, Series, or masks.
	 s_df.loc[rows]	 Some rows (all columns in a DataFrame)
	 df.loc[:, cols_list]	 All rows, some columns
	 df.loc[rows, cols]	 Subset of rows and columns
	 s_df.loc[mask]	 Boolean mask of rows (all columns)
	 df.loc[mask, cols]	 Boolean mask of rows, some columns

Using [] on Series and DataFrames
On Series, [] refers to the index labels, or to a slice:
	 s['a']	 Value
	 s[:2] 	Series, first two rows

On DataFrames, [] refers to columns labels:
	 df['X']	 Series	
	 df[['X', 'Y']]	 DataFrame
	df['new_or_old_col'] = series_or_array

Except with a slice or mask, as shown below:
	 df[:2] 	 DataFrame, first two rows
	 df[mask] 	 DataFrame, rows where mask is True

Never chain brackets	
NO 	 >>> df[mask]['X'] = 1	
	 SettingWithCopyWarning	
YES	 >>> df.loc[mask, 'X'] = 1
	 	

Take your Pandas skills to the next level! Register at enthought.com/pandas-mastery-workshop

www.enthought.com

3 Computation with
Series and DataFrames

Pandas objects do not behave exactly like Numpy arrays. They follow three main rules of binary operations.

Rule 1: Operations between multiple Pandas objects
implement auto-alignment based on index first.
	 > s1 + s2		 > s1.add(s2, fill_value=0)

a 1

b 2

NaN

1

2
NaN

a 1
b 2

0

NaN

b 4

c 5

NaN

4

5

0

b 4

c 5

a NaN

b 4

c NaN

NaN

4
NaN

a 1

b 6

c 5

++ +== =

Use add, sub, mul, and div, to set fill value.

Rule 2: Mathematical operators (+ - * / exp, log, ...)
apply element by element on the values.
	 df + 1	 df.abs()	 np.log(df)

X Y

a -2 -2

b -2 -2

c -2 -2

X Y

a 1 1

b 1 1

c 1 1

X Y

a -1 -1

b -1 -1

c -1 -1

X Y

a 0 0

b 0 0

c 0 0

Rule 3: Reduction operations (mean, std, skew, kurt,
sum, prod, ...) are applied column by column by default.
	 > df.sum()	 Series

X Y

a

b

c

X

Y

> df.sum()

→

Operates across rows by default (axis=0, or axis='rows').
Operate across columns with axis=1 or axis='columns'.

Differences Between
Pandas Objects and Numpy Arrays
When it comes to Pandas objects and Numpy arrays, aligning
objects on the index (or columns) before calculations might be
the most important difference. There are built-in methods for
most common statistical operations, such as mean or sum, and
they apply across one-dimension at a time. To apply custom
functions, use one of three methods to do tablewise (pipe), row
or column-wise (apply), or elementwise (applymap) operations.

Apply a Function to Each Value
Apply a function to each value in a Series or DataFrame:

s.apply(value_to_value)	 →	 Series
df.applymap(value_to_value)	→	 DataFrame

Apply a Function to Each Series
Apply series_to_* function to every column by default
(across rows):
df.apply(series_to_value)	 →	 Series
df.apply(series_to_series)	 →	 DataFrame

To apply the function to every row (across columns), set axis=1:
df.apply(series_to_series, axis=1)

Apply a Function to a DataFrame
Apply a function that receives a DataFrame and returns a Series,
a DataFrame, or a single value:
df.pipe(df_to_series)	 →	 Series
df.pipe(df_to_df)	 →	 DataFrame
df.pipe(df_to_value)	 →	 Value

What Happens with Missing Values?
Missing values are represented by NaN (not a number) or NaT
(not a time).
•	 They propagate in operations across Pandas objects

(1 + NaN → NaN).
•	 They are ignored in a "sensible" way in computations;

They equal 0 in sum, they're ignored in mean, etc.
•	 They stay NaN with mathematical operations such

as np.log(NaN) → NaN.

	 count:	 Number of non-null observations
	 sum: 	 Sum of values
	 mean: 	 Mean of values
	 mad: 	 Mean absolute deviation
	 median: 	 Arithmetic median of values
	 min: 	 Minimum
	 max: 	 Maximum
	 mode: 	 Mode
	 prod: 	 Product of values
	 std: 	 Bessel-corrected sample standard deviation
	 var: 	 Unbiased variance
	 sem: 	 Standard error of the mean
	 skew: 	 Sample skewness (3rd moment)
	 kurt: 	 Sample kurtosis (4th moment)
	 quartile:	 Sample quantile (Value at %)
	value_counts:	 Count of unique values

s1 s1s2 s2

Take your Pandas skills to the next level! Register at enthought.com/pandas-mastery-workshop
©2022 Enthought, Inc., licensed under the Creative Commons Attribution – Non-Commercial, No Derivatives 4.0
International License. To view a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0/ www.enthought.com

4 Plotting with Pandas
Series and DataFrames

Parts of a Figure
An Axes object is what we
think of as a “plot”. It has a
title and two Axis objects
that define data limits. Each
Axis can have a label. There
can be multiple Axes objects
in a Figure.

Setup
Import packages:
>>> import pandas as pd
>>> import matplotlib.pyplot as plt
Execute this at IPython prompt to display figures in new windows:
>>> %matplotlib
Use this in Jupyter notebooks to display static images inline:
>>> %matplotlib inline
Use this in Jupyter notebooks to display zoomable images inline:
> %matplotlib notebook

•	 subplots=True: One subplot per column, instead of one line
•	 figsize: Set figure size, in inches
•	 x and y: Plot one column against another

+

With a Series, Pandas plots values against
the index:
>>> ax = s.plot()

With a DataFrame, Pandas creates one
line per column:
>>> ax = df.plot()

Use Matplotlib to override or add annotations:
>>> ax.set_xlabel('Time')
>>> ax.set_ylabel('Value')
>>> ax.set_title('Experiment A')
Pass labels if you want to override the col-
umn names and set the legend location:
>>> ax.legend(labels, loc='best')

Series DataFrame Labels
Plotting with Pandas Objects

Useful Arguments to Plot

Kinds of Plots

Note: When plotting the results of complex manipulations with groupby, it's often useful to
stack/unstack the resulting DataFrame to fit the one-line-per-column assumption.

df.plot.scatter(x, y) df.plot.hist() df.plot.box()df.plot.bar()

Pandas uses Matplotlib to generate figures. Once a figure is generated with Pandas, all of Matplotlib's functions can be
used to modify the title, labels, legend, etc. In a Jupyter notebook, all plotting calls for a given plot should be in the same cell.

Take your Pandas skills to the next level! Register at enthought.com/pandas-mastery-workshop
©2022 Enthought, Inc., licensed under the Creative Commons Attribution – Non-Commercial, No Derivatives 4.0
International License. To view a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0/ www.enthought.com

VECTORIZED STRING OPERATIONS

5 Manipulating
Dates and Times

Converting Objects to Time Objects
Convert different types like strings, lists, or arrays to Datetime with:
>>> pd.to_datetime(value)
Convert timestamps to time spans and set the period “duration”
with frequency offset.
>>> date_obj.to_period(freq=freq_offset)

Frequency Offsets
Used by date_range, period_range and resample:
•	 B: Business day	 •	 A: Year end
•	 D: Calendar day	 •	 AS: Year start
•	 W: Weekly	 •	 H: Hourly
•	 M: Month end	 •	 S: Secondly
•	 MS: Month start	 •	 L, ms: Milliseconds
•	 BM: Business month end	 •	 U, us: Microseconds
•	 Q: Quarter end	 •	 N: Nanoseconds

For more, look up "Pandas Offset Aliases" or check out the pandas.
tseries.offsets and pandas.tseries.holiday modules.

Timestamps vs Periods

Creating Ranges of Timestamps
>>> pd.date_range(start=None, end=None,
	 	 periods=None, freq=offset,
		 tz='Europe/London')
Specify either a start or end date, or both. Set number of "steps"
with periods. Set "step size" with freq. Specify time zones with tz.

Save Yourself Some Pain: Use ISO 8601 Format
To be consistent and minimize the risk of error or confusion, use
ISO format YYYY-MM-DD when entering dates:
NO	 >>> pd.to_datetime('12/01/2000') # 1st December
	 Timestamp('2000-12-01 00:00:00')
NO 	 >>> pd.to_datetime('13/01/2000') # 13th January!
	 Timestamp('2000-01-13 00:00:00')
YES	 >>> pd.to_datetime('2000-01-13') # 13th January
	 Timestamp('2000-01-13 00:00:00')

Creating Ranges of Periods
>>> pd.period_range(start=None, end=None,
		 periods=None, freq=offset)

Resampling
>>> s_df.resample(freq_offset).mean()

resample returns a groupby-like object that must be aggregated
with mean, sum, std, apply, etc. (See also the Split-Apply-Combine
cheatsheet.)

Pandas implements vectorized string operations named
after Python's string methods. Access them through the
str attribute of string Series.
Some String Methods
>>> s.str.lower()		 >>> s.str.strip()
>>> s.str.isupper()		 >>> s.str.normalize()
>>> s.str.len()
Index by character position:
>>> s.str[0]
True if a regular expression pattern or string is in a Series:
>>> s.str.contains(str_or_pattern)

Splitting and Replacing
Split returns a Series of lists:
>>> s.str.split()
Access an element of each list with get:
>>> s.str.split(char).str.get(1)
Return a DataFrame instead of a list:
>>> s.str.split(expand=True)
Find and replace with string or regular expressions:
>>> s.str.replace(str_or_regex, new)
>>> s.str.extract(regex)
>>> s.str.findall(regex)

Use a Datetime index for easy time-based indexing and slicing, as well as for powerful resampling and data alignment.
Pandas makes a distinction between timestamps, called Datetime objects, and time spans, called Period objects.

Take your Pandas skills to the next level! Register at enthought.com/pandas-mastery-workshop
©2022 Enthought, Inc., licensed under the Creative Commons Attribution – Non-Commercial, No Derivatives 4.0
International License. To view a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0/ www.enthought.com

6 Combining
DataFrames

Y SHORT
0 b bb
1 c cc

Y SHORT
0 b bb
1 c ctc

Y SHORT
0 b bb
1 c cc

Y SHORT
0 b bb
1 c cc

left right

left right

left right how="outer"

LONG X
0 aaaa a
1 bbbb b

LONG X
0 aaaa a
1 bbbb b

LONG X
0 aaaa a
1 bbbb b

LONG X
0 aaaa a
1 bbbb b

left right

LONG X Y SHORT
0 aaaa a — —
1 bbbb b b bb
2 — — c cc

LONG X Y SHORT
0 bbbb b b bb
1 — — c cc

LONG X Y SHORT
0 aaaa a — —
1 bbbb b b bb

LONG X Y SHORT
0 bbbb b b bb

left_on='X' right_on='Y'

how="inner"

how="left"

how="right"left right

There are numerous tools for combining Series and
DataFrames together, with SQL-type joins and concat-
enation. Use join if merging on indices, otherwise use
merge.

Merge on Column Values
>>> pd.merge(left, right, how='inner', on='id')
Ignores index, unless on=None. See the section on the how keyword.

Use on if merging on same column in both DataFrames, otherwise use
left_on, right_on.

Join on Index
>>> df.join(other)
Merge DataFrames on indexes. Set on=columns to join on index of
other and on columns of df. join uses pd.merge under the covers.

Concatenating DataFrames
>>> pd.concat(df_list)
“Stacks” DataFrames on top of each other.
Set ignore_index=True to replace index with RangeIndex.
Note: Faster than repeated df.append(other_df).

To find missing values, use:
>>> s_df.isnull() or >>> pd.isnull(obj)
>>> s_df.notnull() or >>> pd.notnull(obj)

To replace missing values, use:
s_df.loc[s_df.isnull()] = 0	 Use mask to replace NaN
s_df.interpolate(method='linear')	 Interpolate using different methods
s_df.fillna(method='ffill')	 Fill forward (last valid value)
s_df.fillna(method='bfill')	 Or backward (next valid value)
s_df.dropna(how='any')	 Drop rows if any value is NaN
s_df.dropna(how='all')	 Drop rows if all values are NaN
s_df.dropna(how='all', axis=1)	 Drop across columns instead of rows

Pandas represents missing values
as NaN (Not a Number), which comes
from Numpy and is of type float64.
To find and replace these missing
values, you can use any number
of methods.

CLEANING DATA WITH MISSING VALUES

MERGE TYPES: THE HOW KEYWORD

Take your Pandas skills to the next level! Register at enthought.com/pandas-mastery-workshop
©2022 Enthought, Inc., licensed under the Creative Commons Attribution – Non-Commercial, No Derivatives 4.0
International License. To view a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0/ www.enthought.com

7 Split / Apply / Combine
with DataFrames

1.	 Split the data based on
some criteria.

2.	 Apply a function to each group
to aggregate, transform, or filter.

3.	 Combine the results.	

The apply and combine steps are
typically done together in Pandas.

Split: Group By
Group by a single column:
>>> g = df.groupby(col_name)
Grouping with list of column names cre-
ates a DataFrame with a MultiIndex:
>>> g = df.groupby(list_col_names)
Pass a function to group based on the index:
>>> g = df.groupby(function)

Apply/Combine:
General Tool: apply
apply is more general than agg, trans-
form, and filter. It can aggregate,
transform or filter. The resulting dimen-
sions can change, for example:
>>> g.apply(lambda x: x.describe())

Apply/Combine: Transformation
The shape and the index do not change.
>>> g.transform(df_to_df)
Example, normalization:
>>> def normalize(grp):
... return (
... (grp - grp.mean())
... / grp.var()
...)

>>> def normalize(grp):
... return ((grp - grp.mean())
... / grp.var())

Apply/Combine: Filtering
Returns a group only if condition is true.
>>> g.filter(lambda x: len(x)>1)

Split/Apply/Combine

Split Apply Combine

•	 Groupby
•	 Window

Functions

•	 Apply
•	 Group-specific

transformations
•	 Aggregation
•	 Group-specific Filter-

ing

Split: What’s a GroupBy Object?
It keeps track of which rows are part of
which group.
>>> g.groups → Dictionary, where keys
are group names, and values are indices
of rows in a given group.
It is iterable:
>>> for group, sub_df in g:
... ...

Apply/Combine: Aggregation
Perform computations on each group.
The shape changes; the categories in the
grouping columns become the index. Can
use built-in aggregation methods: mean,
sum, size, count, std, var, sem, describe,
first, last, nth, min, max, for example:
>>> g.mean()
... or aggregate using custom function:
>>> g.agg(series_to_value)
... or aggregate with multiple functions at
once:
>>> g.agg([s_to_v1, s_to_v2])
... or use different functions on different
columns:
>>> g.agg({'Y': s_to_v1,
... 'Z': s_to_v2})

a
b
c

0
2

Z
a
a

1
3

Z
b
b

4
Z

c

Other Groupby-Like Operations:
Window Functions
•	 resample, rolling, and ewm (exponen-

tial weighted function) methods behave
like GroupBy objects. They keep track of
which row is in which “group.” Results
must be aggregated with sum, mean,
count, etc.

•	 resample is often used before roll-
ing, expanding, and ewm when using a
DateTime index.

Take your Pandas skills to the next level! Register at enthought.com/pandas-mastery-workshop
©2022 Enthought, Inc., licensed under the Creative Commons Attribution – Non-Commercial, No Derivatives 4.0
International License. To view a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0/ www.enthought.com

8 Reshaping DataFrames
and Pivot Tables

MultiIndex: A Multi-Level Hierarchical Index
Often created as a result of:
>>> df.groupby(list_of_columns)
>>> df.set_index(list_of_columns)
Contiguous labels are displayed together but apply to each row.
The concept is similar to multi-level columns.
A MultiIndex allows indexing and slicing one or multiple levels at
once. Using the Long example from the right:
	 long.loc[1900] 	 All 1900 rows
	 long.loc[(1900, 'March')]	 Value 2
	 long.xs('March', level='Month')	 All March rows

Simpler than using boolean indexing, for example:
>>> long[long.Month == 'March']

Pivot Tables
>>> pd.pivot_table(df,

... index=cols,	 keys to group by for index

... columns=cols2,	 keys to group by for columns

... values=cols3,	 columns to aggregate

... aggfunc='mean')	 what to do with repeated values

Omitting index, columns, or values will use all remaining
columns of df. You can “pivot” a table manually using groupby,
stack, and unstack.

df.pivot() vs pd.pivot_table
df.pivot()	 Does not deal with repeated values in index.

It's a declarative form of stack and unstack.
pd.pivot_table()	 Use if you have repeated values in index

(specify aggfunc argument).

Long to Wide Format and Back with stack()
and unstack()
Pivot column level to index, i.e. “stacking the columns” (wide to long):
>>> df.stack()
Pivot index level to columns, “unstack the columns” (long to wide):
>>> df.unstack()
If there are multiple indices or column levels, use level number or
name to stack/unstack:
>>> df.unstack(1) or >>> df.unstack('Month')
A common use case for unstacking, plotting group data vs index
after groupby:
>>> (df.groupby(['A', 'B])['relevant'].mean()
... .unstack().plot())

From Wide to Long with melt
Specify which columns are identifiers (id_vars, values will be
repeated for each row) and which are “measured variables”
(value_vars, will become values in variable column. All remain-
ing columns by default).
>>> pd.melt(df, id_vars=id_cols, value_vars=value_columns)
>>> pd.melt(team, id_vars=['Color'],
... value_vars=['A', 'B', 'C'],
... var_name='Team',
... value_name='Score')

Let’s explore some tools for reshaping DataFrames from the wide to the long format and back. The long format can be
tidy, which means that each variable is a column, each observation is a row. It is easier to filter, aggregate, transform,
sort, and pivot. Reshaping operations often produces multi-level indices or columns, which can be sliced and indexed.

Take your Pandas skills to the next level! Register at enthought.com/pandas-mastery-workshop
©2022 Enthought, Inc., licensed under the Creative Commons Attribution – Non-Commercial, No Derivatives 4.0
International License. To view a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0/ www.enthought.com

