Plotting with Pandas Series and DataFrames

Pandas uses Matplotlib to generate figures. Once a figure is generated with Pandas, all of Matplotlib's functions can be used to modify the title, labels, legend, etc. In a Jupyter notebook, all plotting calls for a given plot should be in the same cell.

Setup

Import packages:
- `import pandas as pd`
- `import matplotlib.pyplot as plt`

Execute this at the Python prompt to display figures in new windows:
- `%matplotlib`

Use this in Jupyter notebooks to display static images inline:
- `%matplotlib inline`

Use this in Jupyter notebooks to display zoomable images inline:
- `%matplotlib notebook`

Parts of a Figure

An Axes object is what we think of as a "plot". It has a title and two Axis objects that define data limits. Each Axis can have a label. There can be multiple Axes objects in a Figure.

Plotting with Pandas Objects

Series

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
</table>

With a Series, Pandas plots values against the index:
- `ax = s.plot()`

When plotting the results of complex manipulations with `groupby`, it's often useful to `stack/unstack` the resulting DataFrame to fit the one-line-per-column assumption (See Data Structures cheatsheet).

DataFrame

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

With a DataFrame, Pandas creates one line per column:
- `ax = df.plot()`

Useful Arguments to `plot`

- `subplots=True`: one subplot per column, instead of one line
- `figsize`: set figure size, in inches
- `x` and `y`: plot one column against another

Kinds of Plots

- `df.plot(kind='scatter')`
- `df.plot(kind='bar')`
- `df.plot(kind='hist')`
- `df.boxplot()`

Red Panda *Ailurus fulgens*
Methods to read data are all named `pd.read_*` where * is the file type. Series and DataFrames can be saved to disk using their `to_*` method.

Usage Patterns

- Use `pd.read_clipboard()` for one-off data extractions.
- Use the other `pd.read_*` methods in scripts for repeatable analyses.

Parsing Tables from the Web

Colors highlight how different arguments map from the data file to a DataFrame.

```
>>> read_table('historical_data.csv',
              sep=',',
              header=1,
              skiprows=1,
              skipfooter=2,
              index_col=0,
              parse_dates=True,
              na_values=['-'])
```

Possible values of `parse_dates`:
- `{0, 2}`: Parse columns 0 and 2 as separate dates
- `{[0, 2]}`: Group columns 0 and 2 and parse as single date
- `{Date: [0, 2]}`: Group columns 0 and 2, parse as single date in a column named Date.

Dates are parsed after the `converters` have been applied.

Writing Data Structures to Disk

Writing data structures to disk:
```
> s_df.to_csv(filename)
> s_df.to_excel(filename)
```

Write multiple DataFrames to single Excel file:
```
> writer = pd.ExcelWriter(filename)
> df1.to_excel(writer, sheet_name='First')
> df2.to_excel(writer, sheet_name='Second')
> writer.save()
```

Read, using SQLAlchemy. Supports multiple databases:
```
> from sqlalchemy import create_engine
> engine = create_engine(database_url)
> conn = engine.connect()
> df = pd.read_sql(query_str_or_table_name, conn)
> df.to_sql(table_name, conn)
```
Computation with Series and DataFrames

Pandas objects do not behave exactly like Numpy arrays. They follow three main rules (see on the right). Aligning objects on the index (or columns) before calculations might be the most important difference. There are built-in methods for most common statistical operations, such as mean or sum, and they apply across one dimension at a time. To apply custom functions, use one of three methods to do tablewise (pipe), row or column-wise (apply) or elementwise (applymap) operations.

Rule 1: Alignment First

\[s1 + s2 \]
\[
\begin{array}{ll}
 a1 & b2 = \text{NaN} \\
 a2 & b4 = 0 \\
 c5 & \text{NaN}
\end{array}
\]

\[s1 \cdot s2, \text{ fill_value}=0 \]
\[
\begin{array}{ll}
 a1 & b2 = \text{NaN} \\
 a2 & b4 = 0 \\
 c5 & \text{NaN}
\end{array}
\]

Use add, sub, mul, div, to set fill value.

Rule 2: Element-By-Element Mathematical Operations

\[df + 1, df.abs(), \text{ np.log(df)} \]

Apply a Function to Each Value

Apply a function to each value in a Series or DataFrame

\[
\begin{array}{l}
 s \text{ .apply(value_to_value)} \quad \rightarrow \quad \text{Series} \\
 df \text{ .applymap(value_to_value)} \quad \rightarrow \quad \text{DataFrame}
\end{array}
\]

Apply a Function to Each Series

Apply series_to_* function to every column by default (across rows):

\[
\begin{array}{l}
 df \text{ .apply(series_to_series)} \quad \rightarrow \quad \text{DataFrame} \\
 df \text{ .apply(series_to_value)} \quad \rightarrow \quad \text{Series}
\end{array}
\]

To apply the function to every row (across columns), set axis=1:

\[
 df \text{ .apply(series_to_series, axis=1)}
\]

Apply a Function to a DataFrame

Apply a function that receives a DataFrame and returns a DataFrame, a Series, or a single value:

\[
\begin{array}{l}
 df \text{ .pipe(df_to_df)} \quad \rightarrow \quad \text{DataFrame} \\
 df \text{ .pipe(df_to_series)} \quad \rightarrow \quad \text{Series} \\
 df \text{ .pipe(df_to_value)} \quad \rightarrow \quad \text{Value}
\end{array}
\]

What Happens with Missing Values?

Missing values are represented by NaN (not a number) or NaT (not a time).

- They propagate in operations across Pandas objects (1 + NaN → NaN).
- They are ignored in a "sensible" way in computations: they equal 0 in sum, they’re ignored in mean, etc.
- They stay NaN with mathematical operations (np.log(NaN) → NaN).

Rule 3: Reduction Operations

\[\text{>>> df.sum() } \rightarrow \text{ Series} \]

Operates across rows by default (axis=0, or axis='rows'). Operate across columns with axis=1 or axis='columns'.

Reduction functions

- count: Number of non-null observations
- sum: Sum of values
- mean: Mean of values
- mad: Mean absolute deviation
- median: Arithmetic median of values
- min: Minimum
- max: Maximum
- mode: Mode
- prod: Product of values
- std: Bessel-corrected sample standard deviation
- var: Unbiased variance
- sem: Standard error of the mean
- skew: Sample skewness
- (3rd moment)
- kurt: Sample kurtosis
- (4th moment)
- quantile: Sample quantile
- (Value at %)
- value_counts: Count of unique values

Take your Pandas skills to the next level! Register at www.enthought.com/pandas-master-class

© 2016 Enthought, Inc., licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/
Split / Apply / Combine with DataFrames

1. Split the data based on some criteria.
2. Apply a function to each group to aggregate, transform, or filter.
3. Combine the results.

The apply and combine steps are typically done together in Pandas.

Split: Group By

Group by a single column:

`g = df.groupby(col_name)`

Grouping with list of column names creates DataFrame with MultiIndex.

(see “Reshaping DataFrames and Pivot Tables” cheatsheet):

`g = df.groupby(list_col_names)`

Pass a function to group based on the index:

`g = df.groupby(function)`

Apply/Combine: General Tool: apply

More general than `agg`, `transform`, and `filter`. Can aggregate, transform or filter. The resulting dimensions can change, for example:

`g.apply(lambda x: x.describe())`

Apply/Combine: Transformation

The shape and the index do not change.

`g.transform(df_to_df)`

Example, normalization:

```python
def normalize(grp):
    return (grp - grp.mean()) / grp.var()
```

Apply/Combine: Filtering

Returns a group only if condition is true.

`g.filter(lambda x: len(x)>1)`

Other Groupby-Like Operations: Window Functions

- `resample`, `rolling`, and `ewm` (exponential weighted function) methods behave like GroupBy objects. They keep track of which row is in which “group”. Results must be aggregated with `sum`, `mean`, `count`, etc. (see Aggregation).
- `resample` is often used before `rolling` expanding, and `ewm` when using a DateTime index.
Manipulating Dates and Times

Use a Datetime index for easy time-based indexing and slicing, as well as for powerful resampling and data alignment.

Pandas makes a distinction between timestamps, called **Datetime** objects, and time spans, called **Period** objects.

Converting Objects to Time Objects

Convert different types, for example strings, lists, or arrays to Datetime with:

```python
>>> pd.to_datetime(value)
```

Convert timestamps to time spans: set period “duration” with frequency offset (see below).

```python
>>> date_obj.to_period(freq=freq_offset)
```

Creating Ranges of Timestamps

```python
>>> pd.date_range(start=None, end=None, periods=None, freq=freq, tz='Europe/London')
```

Specify either a start or end date, or both. Set number of “steps” with `periods`. Set step size with `freq`; see “Frequency offsets” for acceptable values. Specify time zones with `tz`.

Frequency Offsets

Used by `date_range`, `period_range` and `resample`:

- B: Business day
- D: Calendar day
- W: Weekly
- M: Month end
- MS: Month start
- BM: Business month end
- Q: Quarter end
- A: Year end
- AS: Year start
- H: Hourly
- T, min: Minutely
- L, ms: Milliseconds
- U, us: Microseconds
- N: Nanoseconds

For more:

- Lookup “Pandas Offset Aliases” or check out `pandas.tseries.offsets`, and `pandas.tseries.holiday` modules.

Timestamps vs Periods

```
 Timestamps vs Periods

<table>
<thead>
<tr>
<th>Timestamps</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-01-01</td>
<td>2016-01-02</td>
</tr>
<tr>
<td></td>
<td>2016-01-03</td>
</tr>
<tr>
<td></td>
<td>2016-01-04</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2016-01-01</td>
<td>2016-01-02</td>
</tr>
<tr>
<td>2016-01-03</td>
<td></td>
</tr>
<tr>
<td>2016-01-04</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Creating Ranges or Periods

```python
>>> pd.period_range(start=None, end=None, periods=None, freq=freq_offset)
```

Resampling

```python
>>> s_df.resample(freq_offset).mean()
```

`resample` returns a groupby-like object that must be aggregated with `mean`, `sum`, `std`, `apply`, etc. (See also the Split-Apply-Combine cheat sheet.)

Vectorized String Operations

Pandas implements vectorized string operations named after Python’s string methods. Access them through the `str` attribute of string Series.

Some String Methods

```python
>>> s.str.lower()    
>>> s.str.strip()    
>>> s.str.isupper()  
>>> s.str.normalize()    
>>> s.str.len()    
and more...
```

Index by character position:

```python
>>> s.str[0]
```

True if regular expression pattern or string in Series:

```python
>>> s.str.contains(str_or_pattern)
```

Splitting and Replacing

- `pd.to_datetime('12/01/2000')` # 1st December
  ```python
  Timestamp('2000-12-01 00:00:00')
  ```
- `pd.to_datetime('13/01/2000')` # 13th January!
  ```python
  Timestamp('2000-01-13 00:00:00')
  ```
- `pd.to_datetime('2000-01-13')` # 13th January
  ```python
  Timestamp('2000-01-13 00:00:00')
  ```

- **Save Yourself Some Pain:** Use ISO 8601 Format

When entering dates, to be consistent and to lower the risk of error or confusion, use ISO format `YYYY-MM-DD`:

```
>>> pd.to_datetime('12/01/2000')  # 1st December
 Timestamp('2000-12-01 00:00:00')
```
```
>>> pd.to_datetime('13/01/2000')  # 13th January!
 Timestamp('2000-01-13 00:00:00')
```
```
>>> pd.to_datetime('2000-01-13')  # 13th January
 Timestamp('2000-01-13 00:00:00')
```

- **For more:**
 - Look up “Pandas Offset Aliases” or check out `pandas.tseries.offsets`, and `pandas.tseries.holiday` modules.

- **Used by:** `date_range`, `period_range` and `resample`:

- **...**
Pandas Data Structures: Series and DataFrames

A Series, `s`, maps an index to values. It is:
- Like an ordered dictionary
- A NumPy array with row labels and a name
A DataFrame, `df`, maps index and column labels to values. It is:
- Like a dictionary of Series (columns) sharing the same index
- A 2D NumPy array with row and column labels

`s_df` applies to both Series and DataFrames. Assume that manipulations of Pandas objects return copies.

Creating Series and DataFrames

Series
```
pd.Series(values, index=index, name=name)
pd.Series({'idx1': val1, 'idx2': val2})
```
Where `values`, `index`, and `name` are sequences or arrays.

DataFrame
```
pd.DataFrame(values, index=index, columns=col_names)
pd.DataFrame({'col1': series1_or_seq, 'col2': series2_or_seq})
```
Where `values` is a sequence of sequences or a 2D array.

Manipulating Series and DataFrames

Manipulating Columns
- `df.rename(columns={old_name: new_name})` Renames column
- `df.drop(name_or_names, axis='columns')` Drops column name

Manipulating Index
- `s_df.reindex(new_index)` Conform to new index
- `s_df.drop(labels_to_drop)` Drops index labels
- `s_df.rename(index={old_label: new_label})` Renames index labels
- `s_df.reset_index()` Drops index, replaces with Range index
- `s_df.sort_index()` Sorts index labels

Manipulating Values
All row values and the index will follow:
- `df.sort_values(col_name, ascending=True)` Value
- `df.sort_values([col1', col2'], ascending=[False, True])` Series, first 2 rows

Important Attributes and Methods
```
s_df.index       # Array-like row labels
s_df.columns     # Array-like column labels
s_df.values      # Numpy array, data
s_df.shape       # (n_rows, m_cols)
s.dtype, df.dtypes # Type of Series, of each column
len(s_df)         # Number of rows

s_df.head() and s_df.tail()  # First/last rows
s.unique()             # Series of unique values
s.describe()           # Summary stats
df.info()              # Memory usage
```

Indexing and Slicing

Use these attributes on Series and DataFrames for indexing, slicing, and assignments:
```
s_df.loc[] Refers only to the index labels
s_df.iloc[] Refers only to the integer location, similar to lists or NumPy arrays
s_df.xs(key, level) Select rows with label key in level level of an object with MultiIndex.
```

Masking and Boolean Indexing

Create masks with, for example, comparisons
```
mask = df['X'] < 0
```
Or `isin`, for membership mask
```
mask = df['X'].isin(list_valid_values)
```
Use masks for indexing (must use `loc`)
```
df.loc[mask] = 0
```
Combine multiple masks with bitwise operators (and (&), or (|), xor (^), not (~)) and group them with parentheses:
```
mask = (df['X'] < 0) & (df['Y'] == 0)
```

Common Indexing and Slicing Patterns

On Series, [] refers to the index labels, or to a slice
```
s['a']        # Series, first 2 rows
s[:2]         # Series, first 2 rows
```

On DataFrames, [] refers to columns labels:
```
df['X']        # Series
df[['X', 'Y']] # DataFrame
```
```
df[new_or_old_col] = series_or_array
```
EXCEPT! With a slice or mask.
```
df[[X', Y']]
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
Combining DataFrames

Tools for combining Series and DataFrames together, with SQL-type joins and concatenation. Use `join` if merging on indices, otherwise use `merge`.

**Concatenating DataFrames**

```python
> pd.concat(df_list)
```

“Stacks” DataFrames on top of each other. Set `ignore_index=True`, to replace index with `RangeIndex`. Note: Faster than repeated `df.append(other_df)`.

**Join on Index**

```python
> df.join(other)
```

Merge DataFrames on index. Set `on=None`. See value of `how` below. Use `on` if merging on same column in both DataFrames, otherwise use `left_on, right_on`.

**Merge Types: The how Keyword**

- `how="outer"`
  ```
 left
 long | X |
 0 | a |
 1 | b |

 right
 long | X | Y | short |
 0 | a | — | — |
 1 | b | b | bb |
 2 | — | c | cc |
  ```

- `how="inner"`
  ```
 left
 long | X |
 0 | a |
 1 | b |

 right
 long | X | Y | short |
 0 | b | b | bb |
 1 | c | c | cc |
  ```

- `how="left"`
  ```
 left
 long | X |
 0 | a |
 1 | b |

 right
 long | X | Y | short |
 0 | a | — | — |
 1 | b | b | bb |
  ```

- `how="right"`
  ```
 left
 long | X |
 0 | a |
 1 | b |

 right
 long | X | Y | short |
 0 | b | b | bb |
 1 | c | c | cc |
  ```

**Cleaning Data with Missing Values**

Pandas represents missing values as `NaN` (Not a Number). It comes from Numpy and is of type `float64`. Pandas has many methods to find and replace missing values.

**Find Missing Values**

```python
> s_df.isnull() > pd.isnull(obj)
> s_df.notnull() > pd.notnull(obj)
```

**Replacing Missing Values**

```python
s_df.loc[s_df.isnull()] = 0
```

Use mask to replace `NaN`

```python
s_df.interpolate(method='linear')
```

Interpolate using different methods

```python
s_df.fillna(method='ffill')
```

Fill forward (last valid value)

```python
s_df.fillna(method='bfill')
```

Or backward (next valid value)

```python
s_df.dropna(how='any')
```

Drop rows if any value is `NaN`

```python
s_df.dropna(how='all')
```

Drop rows if all values are `NaN`

```python
s_df.dropna(how='all', axis=1)
```

Drop across columns instead of rows
Reshaping Dataframes and Pivot Tables

Tools for reshaping DataFrames from the wide to the long format and back. The long format can be tidy, which means that “each variable is a column, each observation is a row”. Tidy data is easier to filter, aggregate, transform, sort, and pivot. Reshaping operations often produce multi-level indices or columns, which can be sliced and indexed.

MultiIndex: A Multi-Level Hierarchical Index

Often created as a result of:
> df.groupby(list_of_columns)
> df.set_index(list_of_columns)

Contiguous labels are displayed together but apply to each row. The concept is similar to multi-level columns.

A MultiIndex allows indexing and slicing one or multiple levels at once. Using the Long example from the right:

```
long.loc[1900] # All 1900 rows
long.loc[(1900, 'March')] # value 2
long.xs('March', level='Month') # All March rows
```

Simpler than using boolean indexing, for example:
```
> long[long.Month == 'March']
```

Pivot Tables

```
> pd.pivot_table(df,
 index=cols, (keys to group by for index)
 columns=cols2, (keys to group by for columns)
 values=cols3, (columns to aggregate)
 aggfunc='mean') (what to do with repeated values)
```

Omitting index, columns, or values will use all remaining columns of df. You can “pivot” a table manually using groupby, stack and unstack.

```
pd.melt(team, id_vars=['Color'],
 value_vars=['A', 'B', 'C'],
 var_name='Team', value_name='Score')
```

From Wide to Long with melt

Specify which columns are identifiers (id_vars, values will be repeated for each row) and which are “measured variables” (value_vars, will become values in variable column. All remaining columns by default).

```
pd.melt(df, id_vars=id_cols, value_vars=value_columns)
```

```
pd.pivot_table(df,
 index="Recently updated",
 columns="continent code",
 values="Number of stations",
 aggfunc=np.sum)
```

```
> df.pivot() vs pd.pivot_table
```

```
df.pivot() Does not deal with repeated values in index. It’s a declarative form of stack and unstack.
df.pivot() Use if you have repeated values in index (specify aggfunc argument).
```

© 2016 Enthought, Inc., licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/