For those just getting started with advanced scientific computing techniques, here are four steps to efficiently turn data into decisions with business value.
Author:Â Ryan Swindeman, Scientific Software Developer
In the 4 minute video below, Enthought scientist Ryan Swindeman puts data into context as foundational to any digital transformation initiative, setting out four fundamental steps for data to science problems.
1. Data Preparation (or Data Conditioning): This is the essential, first step in a digital project. Data must be clean and accessible. Access to data must be quick, and reliable. The data must be cataloged or categorized, so that there is consistency in how it is reached and integrated into projects. Data preparation must be in service of addressing a business need or objective, to solve a specific problem, and not be a case of ‘we need to organize our data’.
2. Data Visualization: Visualizing data is important as a starting point to understanding a problem. This involves looking at the data in its native domain, identifying trends, and from there possibly transforming it to a different domain, cross-plotting to look for relationships, or running statistics as a way to discover features. Visualization is also a reliable way to increase efficiency in problem-solving. The understanding gained through visualization is essential for deep learning – if you do not understand the underlying trends or relationships in the data, you will not understand the outcomes produced by any AI/ML/Deep Learning.
3. Modeling and Optimization: This step uses the underlying dynamics or physics of the problem, and the applications are endless. (In geophysics, this is often called forward modeling and inversion.) Most critically, modeling and optimization allows scientists to prove (or disprove) hypotheses very quickly, enabling teams to test, iterate and change strategy, often resulting in problems being solved quickly.
4. AI/ML/Deep Learning: These advanced computing techniques are related, and differ in important ways. Unlike modeling and optimization, or inversion (which is a physics-based approach), AI/ML/Deep Learning is a data-driven approach. These techniques are beneficial if forward modeling and optimization are not possible because of a lack of understanding of the underlying physics, or if the physics leads to too many approximations. The problem-solving and analytical power of AI/ML/Deep Learning becomes obvious in pattern recognition or texture analysis.
These four steps provide a robust sequence for solving problems using data, whether a small set or large, fundamental to digital transformation projects.
About the Author
Ryan Swindeman, Scientific Software Developer, holds a M.S. in geophysics from the University of Texas at Austin and a B.S. in physics from the University of Illinois at Urbana-Champaign, with graduate research in computational seismology.
Related Content
Making the Most of Small Data in Scientific R&D
March 9, 2023|Life Sciences, Materials Science, Transformation Making the Most of Small Data in Scientific R&D For many traditional innovation-driven organizations, scientific data is generated…
ChatGPT on Software Engineering
Recently, I’ve been working on a new course offering in Enthought Academy titled Software Engineering for Scientists and Engineers course. I’ve focused on distilling the…
What’s in a __name__?
if __name__ == “__main__”: When I was new to Python, I ran into a mysterious block of code that looked something like: def main(): Â …
3 Trends for Scientists To Watch in 2023
As a company that delivers Digital Transformation for Science, part of our job at Enthought is to understand the trends that will affect how our…
Accelerating Science: the Classical Mechanics Perspective
When thinking about enhancing R&D processes, Newton’s second law of motion provides the perfect framework. Classical mechanics teaches us that putting a body into motion…
Announcing Enthought Academy
Dear Students and Friends of Enthought, I am pleased to announce Enthought Academy—the culmination of over twenty years of teaching Scientific Python. Since our founding…
Extracting Target Labels from Deep Learning Classification Models
In the blog post Configuring a Neural Network Output Layer we highlighted how to correctly set up an output layer for deep learning models. Here,…
True DX in the Pharma R&D Lab Defined by Enthought
Enthought’s team in Japan exhibited at the Pharma IT & Digital Health Expo 2022 life sciences conference in Tokyo, to meet with pharmaceutical industry leaders…
Life Sciences Labs Optimize with New Digital Technologies and Upskilling
Labs are resetting the trajectory for drug development: reducing timelines from years to months; decreasing costs from billions to millions; and gaining an advantage by…
Webinar Q&A: Accelerating Product Reformulation with Machine Learning
In our recent C&EN Webinar: Accelerating Consumer Products Reformulation with Machine Learning, we demonstrated how to leverage digital tools and technology to bring new products…