Python for MATLAB Users: What You Need To Know

Why migrate from MATLAB to Python?

Python has a lot of momentum. Many high profile projects use it and more are migrating to it all the time. Why? One reason is that Python is free, but more importantly, it is because Python has a thriving ecosystem of packages that allow developers to work faster and more efficiently. They can go from prototyping to production to scale on hardware ranging from a Raspberry Pi (or maybe micro controller) to a cluster, all using the same language. A large part of Python’s growth is driven by its excellent support for work in the fields of science, engineering, machine learning, and data science.

You and your organization might be thinking about migrating from MATLAB to Python to get access to the ecosystem and increase your productivity, but you might also have some outstanding questions and concerns, such as: How do I get started? Will any of my knowledge transfer? How different are Python and MATLAB? How long will it take me to become proficient? Is it too big a of a shift? Can I transition gradually or do I have to do it all at once? These are all excellent questions.

We know people put a lot of thought into the tools they select and that changing platforms is a big deal. We created this webinar to help you make the right choice.

What:  A guided walkthrough and Q&A about how to migrate from MATLAB® to Python with Enthought Lead Instructor, Dr. Alexandre Chabot-Leclerc.

Who Should Watch: MATLAB® users who are considering migrating to Python, either partially or completely.

View the Webinar on MATLAB for Python Users here

In this webinar, we’ll give you the key information and insight you need to quickly evaluate whether Python is the right choice for you, your team, and your organization, including:

  • How to get started
  • What you need in order to replicate the MATLAB experience
  • Important conceptual differences between MATLAB and Python
  • Important similarities between MATLAB and Python: What MATLAB knowledge will transfer
  • Strategies for converting existing MATLAB code to Python
  • How to accelerate your transition

Presenter: Alexandre Chabot-Leclerc, Ph.D., Vice President, Digital Transformation


Already a Python user? Jumpstart your work today.

Python for Scientists & Engineers Training: The Quick Start Approach to Turbocharging Your Work

If you are tired of running repeatable processes manually and want to (semi-) automate them to increase your throughput and decrease pilot error, or you want to spend less time debugging code and more time writing clean code in the first place, or you are simply tired of using a multitude of tools and languages for different parts of a task and want to replace them with one comprehensive language, then Enthought’s Python for Scientists and Engineers is definitely for you!

This class has been particularly appealing to people who have been using other tools like MATLAB or even Excel for their computational work and want to start applying their skills using the Python toolset.

One reason for its broad popularity is its efficiency and ease-of-use. Many people consider Python more fun to work in than other languages (and we agree!). Another reason for its popularity among scientists, engineers, and analysts in particular is Python’s support for rapid application development and extensive (and growing) open source library of powerful tools for preparing, visualizing, analyzing, and modeling data as well as simulation.

Python is also an extraordinarily comprehensive toolset – it supports everything from interactive analysis to automation to software engineering to web app development within a single language and plays very well with other languages like C/C++ or FORTRAN so you can continue leveraging your existing code libraries written in those other languages.

Many organizations are moving to Python so they can consolidate all of their technical work streams under a single comprehensive toolset. In the first part of this class we’ll give you the fundamentals you need to switch from another language to Python and then we cover the core tools that will enable you to do in Python what you were doing with other tools, only faster and better!

Share this article:

Related Content

Prospecting for Data on the Web

Introduction At Enthought we teach a lot of scientists and engineers about using Python and the ecosystem of scientific Python packages for processing, analyzing, and…

Read More

Configuring a Neural Network Output Layer

Introduction If you have used TensorFlow before, you know how easy it is to create a simple neural network model using the Keras API. Just…

Read More

No Zero Padding with strftime()

One of the best features of Python is that it is platform independent. You can write code on Linux, Windows, and MacOS and it works…

Read More

Got Data?

Introduction So, you have data and want to get started with machine learning. You’ve heard that machine learning will help you make sense of that…

Read More

Sorting Out .sort() and sorted()

Sorting Out .sort() and sorted() Sometimes sorting a Python list can make it mysteriously disappear.  This happens even to experienced Python programmers who use .sort()…

Read More

A Beginner’s Guide to Deep Learning

Deep learning. By this point, we’ve all heard of it. It’s the magic silver bullet that can fix any complex problem. It’s the special ingredient…

Read More

Scientists Who Code

Digital skills personas for success in digital transformation The digital skills mix varies widely across companies, from those just starting to invest in digital transformation…

Read More

Giving Visibility to Renewable Energy

The ultimate project goal of EnergizAIR Infrastructure was to raise individual awareness of the contribution of renewable energy sources, and ultimately change behaviors. Now ten…

Read More

Introducing Enthought Edge: Unlocking the Value of R&D Data

While the value of R&D data is clear, finding a way to sort through it can be daunting given the special handling required to extract…

Read More

Machine Learning in Materials Science

The process of materials discovery is complex and iterative, requiring a level of expertise to be done effectively. Materials workflows that require human judgement present…

Read More

Join Our Mailing List!

Sign up below to receive email updates including the latest news, insights, and case studies from our team.