To have a transformative impact, labs must reinvent workflows through digital technologies and skills, adopting a strong data culture. Innovation through digital-centric systems confidently produces new materials that meet customer specifications orders of magnitude faster than before, enabling broader business transformation.
Authors: Chris Farrow, Ph.D., VP Materials Science Solutions and Michael Heiber, Manager, Materials Informatics
Leveling Up
Digital technologies are having a significant impact on R&D labs across all technology driven industries, in particular in chemistry and materials science. The bigger challenge is how to evolve R&D labs in a way that delivers value early and continuously, while creating an environment for innovation that can deliver orders of magnitude improvements in performance, and ultimately, business value.
The white paper ‘The Journey to Digital-centric Chemicals and Materials Laboratories’ posits that the transformation of R&D labs takes place in a well planned journey through five distinct levels, taking a holistic approach to data capture and usage, infrastructure and digital processes, introducing increasing levels of autonomy.
The levels are:
- Level 1: The Human-centric Lab
- Level 2: The Data-informed Lab
- Level 3: The Data-driven Lab
- Level 4: The Transforming Lab
- Level 5: The Digital-centric Autonomous Lab
The Transformed R&D Lab
Transforming a lab in today’s digital world is a journey. Scientists must acquire new skills, adopt a strong data culture and be empowered to bring digital innovation into the lab. Digital technologies that can rapidly evolve in lock-step with the lab must be adopted. An R&D system that is too rigid, inefficient, or adopted as a quick fix must be avoided, as it will be incapable of broader transformation and unable to adapt as business needs change.
When the lab arrives at a point where scientists can dial-in desired material or chemical properties, and samples with those properties are produced quickly and automatically, there has been a true transformation. It is now possible to develop highly customized products for each customer, bring speciality services into new markets, and stave off commoditization.
From there, the business must decide how to leverage this new capability. The challenge flips from a technical one of creating samples, to a business one of scaling production capacity, creating new customer-focussed digital sales tools, expanding into new markets and generating increased revenue – a good set of challenges to have.
Key to advancing to a Digital-centric Autonomous Lab is that technological and cultural changes progress concurrently. Technological initiatives generate value, while cultural and organizational initiatives accelerate value, increasing the potential beyond incremental steps, and ensuring a foundation for future progress. Once a given level has been mastered, the lab is positioned to move to the next.
At the final level, entirely new possibilities can be explored and a new future envisioned in line with broader digital business transformation goals.
Access the white paper here.
About the Authors
Chris Farrow, VP Materials Science Solutions, holds a Ph.D. in physics from Michigan State University and degrees in physics and mathematics from the University of Nebraska.
Michael Heiber, Manager, Materials Informatics, holds a Ph.D. in polymer science from The University of Akron and a B.S. in materials science and engineering from the University of Illinois at Urbana-Champaign with expertise in polymers for optoelectronic applications.
Related Content
3 Trends for Scientists To Watch in 2023
As a company that delivers Digital Transformation for Science, part of our job at Enthought is to understand the trends that will affect how our…
Accelerating Science: the Classical Mechanics Perspective
When thinking about enhancing R&D processes, Newton’s second law of motion provides the perfect framework. Classical mechanics teaches us that putting a body into motion…
Announcing Enthought Academy
Dear Students and Friends of Enthought, I am pleased to announce Enthought Academy—the culmination of over twenty years of teaching Scientific Python. Since our founding…
Extracting Target Labels from Deep Learning Classification Models
In the blog post Configuring a Neural Network Output Layer we highlighted how to correctly set up an output layer for deep learning models. Here,…
True DX in the Pharma R&D Lab Defined by Enthought
Enthought’s team in Japan exhibited at the Pharma IT & Digital Health Expo 2022 life sciences conference in Tokyo, to meet with pharmaceutical industry leaders…
Life Sciences Labs Optimize with New Digital Technologies and Upskilling
Labs are resetting the trajectory for drug development: reducing timelines from years to months; decreasing costs from billions to millions; and gaining an advantage by…
Digital Transformation of the Materials Science R&D Lab
“Digital transformation”, “machine learning”, and “artificial intelligence” are buzzwords heard in every industry, from the boardroom to the lab. We asked Dr. Michael Heiber, lead…
Takeaways from SEMICON West 2021
SEMICON West 2021 lived up to its status as the signature conference for the extended microelectronics supply chain. Business and technology leaders, researchers, and analysts…
Enthought’s Takeaways from SEMI SMC 2021
At this year’s SEMI Strategic Materials Conference, leaders in the semiconductor industry across the supply chain came together to discuss the big challenges and opportunities…
Webinar Q&A: Accelerating Product Reformulation with Machine Learning
In our recent C&EN Webinar: Accelerating Consumer Products Reformulation with Machine Learning, we demonstrated how to leverage digital tools and technology to bring new products…
Join Our Mailing List!
Sign up below to receive email updates including the latest news, insights, and case studies from our team.