Optimized Workflows: Towards Reproducible, Extensible and Scalable Bioinformatics Pipelines
A bioinformatics pipeline is an analysis workflow that takes input data files in unprocessed raw form through a series of transformations to produce output data in a human-interpretable form.
A bioinformatics pipeline evolves through five phases. Pipeline bioinformaticians first seek to collect and explore the essential components, including raw data, tools, and references (Conception Phase). Then, they automate the analysis steps and investigate pipeline results (Survival Phase). Once satisfied, they move on to seek reproducibility and robustness (Stability Phase), extensibility (Success Phase), and finally scalability (Significance Phase).
Where are you in the development of the optimized bioinformatics pipeline?
To learn more, download the "Optimized Workflows: Towards Reproducible, Extensible and Scalable Bioinformatics Pipelines" white paper brought to you by the Enthought Life Sciences Solutions Group, and explore:
- The five phases of bioinformatics pipelines and how to get to the next level
- The implications for labs in a competitive marketplace
- Real examples of challenges and solutions for each phase, related to: exploring protein reference databases, automating pipeline results visualization, improving a transcriptome analysis pipeline, transforming a metagenome pipelines framework, and handling memory exhaustion when scaling
Questions or interested in a free 30-minute consultation? Contact info@enthought.com to discuss how Enthought can help transform what’s possible in your R&D lab.
Download White Paper
Related Content
Jupyter AI Magics Are Not ✨Magic✨
It doesn’t take ✨magic✨ to integrate ChatGPT into your Jupyter workflow. Integrating ChatGPT into your Jupyter workflow doesn’t have to be magic. New tools are…
Top 5 Takeaways from the American Chemical Society (ACS) 2023 Fall Meeting: R&D Data, Generative AI and More
By Mike Heiber, Ph.D., Materials Informatics Manager Enthought, Materials Science Solutions The American Chemical Society (ACS) is a premier scientific organization with members all over…
Real Scientists Make Their Own Tools
There’s a long history of scientists who built new tools to enable their discoveries. Tycho Brahe built a quadrant that allowed him to observe the…
How IT Contributes to Successful Science
With the increasing importance of AI and machine learning in science and engineering, it is critical that the leadership of R&D and IT groups at...
From Data to Discovery: Exploring the Potential of Generative Models in Materials Informatics Solutions
Generative models can be used in many more areas than just language generation, with one particularly promising area: molecule generation for chemical product development.
7 Pro-Tips for Scientists: Using LLMs to Write Code
Scientists gain superpowers when they learn to program. Programming makes answering whole classes of questions easy and new classes of questions become possible to answer….
The Importance of Large Language Models in Science Even If You Don’t Work With Language
OpenAI's ChatGPT, Google's Bard, and other similar Large Language Models (LLMs) have made dramatic strides in their ability to interact with people using natural language....
4 Reasons to Learn Xarray and Awkward Array—for NumPy and Pandas Users
You know it. We know it. NumPy is cool. Pandas is cool. We can bend them to our will, but sometimes they’re not the right tools…
Leveraging AI in Cell Culture Analysis
Mammalian cell culture is a fundamental tool for many discoveries, innovations, and products in the life sciences.
Making the Most of Small Data in Scientific R&D
For many traditional innovation-driven organizations, scientific data is generated to answer specific immediate research questions and then archived to protect IP, with little attention paid...