Tackling the Big Challenges with Artificial Intelligence and Computational Science
Enthought Provides Insights at Alan Turing Institute-Oden Institute Event in London
Enthought CEO Dr. Eric Jones and President Bill Cowan were recently invited by the UK government to participate in a timely conversation around artificial intelligence and computational science and engineering with the world’s leading researchers from the renowned Alan Turing Institute and the Oden Institute. At the January event held in London, Jones and Cowan were asked to provide insights on the scientific application of digital twins and the challenges of translating research to value in industry.
“Scientific research in academia is critically important because there is a freedom to test and explore that doesn’t necessarily exist in the business world,” said Cowan. “What’s learned in academic settings can seed innovations in industry that change the world.” Cowan also shared that while research can greatly expand the body of knowledge, successful application in industry requires a change in mindset and strategy.
R&D for science-driven companies should focus on what brings value to the business, requiring setting different goals and incentives, accelerating timelines through optimized workflows, and upskilling scientists to leverage modern tools like machine learning and AI. One key challenge is the ability to translate between the science and technical domains, all while prioritizing business value, particularly when those knowledge sets are siloed within the organization. Cowan noted that this translation interface is where Enthought has seen customer’s historical failures and a key place where our approach has had a tremendous impact.
Similar themes were discussed by Jones on the “Spotlight on Digital Twins Research” panel. “There’s a lot of interesting science we can do, and companies today are sold on the latest technologies like artificial intelligence and digital twins,” said Jones. “But most are not seeing ROI because they’re not focused on the business value. The science is clearly important, but it’s only one part of the bigger picture.”
Jones emphasized how the approach to scientific research and innovation, in both academia and industry, needs to move from being human-centric to compute-centric. Human-centric research is built around the limitations of humans, with the goal of making the next new discovery. When research and development is compute-centric, not only are the traditional limitations lifted, the purpose of the research sits at a higher level—to build intuition in order to make new discoveries continually. Most research labs are not set up for the compute-centric approach, not yet “future-proofed,” but more and more science-driven companies are prioritizing and investing in more holistic technology initiatives like digital transformation to be competitive.
The London event concluded in strong agreement that continued conversations are critical to advancing what’s possible in AI and computational science and engineering. “Enthought has been helping companies solve their complex scientific challenges for over 20 years,” said Cowan. “Collaborations with our academic counterparts only strengthen the field and our work to digitally transform science.”
—
About Enthought
Enthought, Inc. powers digital transformation for science. Enthought’s technology and deep scientific expertise enable faster discovery and continuous innovation, building a digitally enabled workforce and arming them with analytics-ready scientific data to be catalysts of value creation in science and business. Enthought specializes in transforming organizations in the electronic, semiconductor, materials design, manufacturing, pharmaceutical, biotechnology, energy and consumer goods markets. Enthought is headquartered in Austin, Texas, with additional offices in Houston, Texas; Cambridge, United Kingdom; Zürich, Switzerland; and Tokyo, Japan. For more, explore enthought.com and follow us on LinkedIn and Twitter.
Related Content
Making the Most of Small Data in Scientific R&D
March 9, 2023|Life Sciences, Materials Science, Transformation Making the Most of Small Data in Scientific R&D For many traditional innovation-driven organizations, scientific data is generated…
ChatGPT on Software Engineering
Recently, I’ve been working on a new course offering in Enthought Academy titled Software Engineering for Scientists and Engineers course. I’ve focused on distilling the…
What’s in a __name__?
if __name__ == “__main__”: When I was new to Python, I ran into a mysterious block of code that looked something like: def main(): …
Why Python?
Why Python? Of all of the questions that I have been asked as the instructor of an Enthought Python course, this has been one of…
3 Trends for Scientists To Watch in 2023
As a company that delivers Digital Transformation for Science, part of our job at Enthought is to understand the trends that will affect how our…
Accelerating Science: the Classical Mechanics Perspective
When thinking about enhancing R&D processes, Newton’s second law of motion provides the perfect framework. Classical mechanics teaches us that putting a body into motion…
Retuning the Heavens: Machine Learning and Ancient Astronomy
What can we learn about machine learning from ancient astronomy? When thinking about Machine Learning it is easy to be model-centric and get caught up…
Announcing Enthought Academy
Dear Students and Friends of Enthought, I am pleased to announce Enthought Academy—the culmination of over twenty years of teaching Scientific Python. Since our founding…
Extracting Target Labels from Deep Learning Classification Models
In the blog post Configuring a Neural Network Output Layer we highlighted how to correctly set up an output layer for deep learning models. Here,…
True DX in the Pharma R&D Lab Defined by Enthought
Enthought’s team in Japan exhibited at the Pharma IT & Digital Health Expo 2022 life sciences conference in Tokyo, to meet with pharmaceutical industry leaders…