Overcoming common barriers to the materials science lab of the future
By Chris Farrow, PhD, Enthought Vice President, Materials Science Solutions
As demand increases and competition becomes tighter for functional materials, such as electrolytes for batteries, consumables for semiconductor manufacturing, and functional plastics, materials and chemical companies are competing to continuously innovate and differentiate themselves in new and existing markets. Despite the urgency, 60-70% of scientists’ time is still spent on non-research activities like administrative tasks and general data work.
The key to accelerating discovery and innovation is to transition from a traditional materials lab to the lab of the future. When successfully implemented, the lab of the future has an infrastructure of purpose-built technology with optimized workflows. Materials scientists and chemists are empowered with digital skills that enable them to make discoveries faster and more efficiently than ever before. To many R&D leaders, however, a digital automated lab remains an out-of-reach, abstract idea. While it’s clear that advanced technologies are essential in scientific discovery today, they often don’t know where to start or struggle with translating the unique challenges of the research lab to company executives and IT stakeholders.
In this article, I cover three common barriers preventing materials and chemical companies from fulfilling their lab of the future aspirations, along with what to consider to overcome them and get started.
Read the full article in R&D World here.
More resources about building the Lab of the Future here.
Related Content
Leveraging AI in Cell Culture Analysis
Mar 22, 2023|Life Sciences, Technology Mammalian cell culture is a fundamental tool for many discoveries, innovations, and products in the life sciences. Currently, cells are…
Making the Most of Small Data in Scientific R&D
March 9, 2023|Life Sciences, Materials Science, Transformation Making the Most of Small Data in Scientific R&D For many traditional innovation-driven organizations, scientific data is generated…
7 Lesser-Known Command Line Tools That Ship with Python
Like most people, I mostly interact with Python using the default REPL or with IPython. Yet, I often reach for one of the Python tools…
ChatGPT on Software Engineering
Recently, I’ve been working on a new course offering in Enthought Academy titled Software Engineering for Scientists and Engineers course. I’ve focused on distilling the…
What’s in a __name__?
if __name__ == “__main__”: When I was new to Python, I ran into a mysterious block of code that looked something like: def main(): …
Why Python?
Why Python? Of all of the questions that I have been asked as the instructor of an Enthought Python course, this has been one of…
3 Trends for Scientists To Watch in 2023
As a company that delivers Digital Transformation for Science, part of our job at Enthought is to understand the trends that will affect how our…
Accelerating Science: the Classical Mechanics Perspective
When thinking about enhancing R&D processes, Newton’s second law of motion provides the perfect framework. Classical mechanics teaches us that putting a body into motion…
Retuning the Heavens: Machine Learning and Ancient Astronomy
What can we learn about machine learning from ancient astronomy? When thinking about Machine Learning it is easy to be model-centric and get caught up…
Announcing Enthought Academy
Dear Students and Friends of Enthought, I am pleased to announce Enthought Academy—the culmination of over twenty years of teaching Scientific Python. Since our founding…